Hydrogeological Investigation Grasswood Estates Subdivision W1/2 26-35-5 West of 3rd Meridian

R.M. of Corman Park, Saskatchewan

File S1607.7 14 September 2012

Executive Summary

Clifton Associates Ltd. was retained to conduct a hydrogeological investigation of the proposed Grasswood Estates subdivision development (Site) located south of the City of Saskatoon. The objective of the work was to characterize the groundwater conditions with particular emphasis on characterizing the cumulative impact of 80 individual proposed septic disposal fields. Individual waste water systems and a communal water supply system are proposed.

The site is located on the Saskatoon Low. The stratigraphy consists of sediments of the Haultain Formation overlying thick sediments of the Battleford Till overlying clay shale bedrock of the Bearpaw Formation. The Haultain formation is a glacio-fluvial unit consisting of a surficial sand unit underlain by interbedded sand and clay facies. At the site, surficial sand predominates with stratified clay present within 2 m of surface in several instances.

Site investigations and piezometer installations were conducted on 26 June 2012 and 28 June 2012 with groundwater levels obtained within days of the installation. Thirteen piezometers were installed to a depth of between 6 m to 14 m to characterize the soil conditions and measure the groundwater level. An additional piezometer from a previous investigation completed in 2008 was also included in the monitoring program. Preliminary monitoring of groundwater depths, groundwater chemistry, and hydraulic conductivity analysis was performed on each piezometer.

Water wells within a 1 km radius of the site were identified, surveyed and water elevation measurements obtained. A regional piezometric surface was developed from the on-site piezometers and the adjacent water wells. Groundwater flow is from east to west.

The depth from surface to the normal groundwater levels varied from 1.2 m to 5.8 m. The shallowest groundwater levels were observed near the north east corner of the Site and also in the South east low relief area of the Site. Deeper groundwater depths were observed in the central east portions of the Site.

Background groundwater chemistry was conducted for two purposes, one of which was to characterize baseline Site conditions, and second was to provide data for development of the contaminant transport model to simulate groundwater conditions based on our understanding of the effluent loading proposed. Baseline results indicate that existing nitrate impacts are present in the north central region of the site, elevated levels of sulphates, chlorides and TDS in the south region, and throughout the site elevated levels of metals exist. Elevated concentration of metals are not uncommon in Saskatchewan groundwater. A spatial pattern was not apparent to correlate the concentrations; therefore no source could be identified. They are presumed to be background conditions at this time. The south eastern area has elevated TDS, alkalinity, sulphates and chloride. In the area where we see high alkalinity, the site is low lying, with potential for accumulation of alkali conditions. This may have occured as a result of evapotranspiration creating elevated concentrations as noted above. A land use investigation indicated that an intensive livestock farm existed in the area where nitrate concentrations are elevated.

The proposed development consists of 80 lots over an area of 128 hectares. Potable water will be piped to the site. No groundwater wells for potable water are proposed. The proposed system is the FAST® Wastewater Treatment System. Homeowners will be required to install this system. It provides a 70% reduction in nitrate concentration in the effluent.

A groundwater model was developed for the site using Visual MODFLOW software. A single strata model extending from the east of the site to west of the site was developed and calibrated to the existing groundwater elevations. Nitrate was the contaminant of concern modeled. A 100 year model duration was used.

Nitrate sources consisted of the individual effluent disposal fields at typical locations within each proposed lot. In addition, existing nitrate of 51 mg/L was encountered in one of the piezometers and is associated with previous cattle operations at the site. This source was also modeled. Two source concentrations were modeled. The first is 40 mg/L and reflects the nitrate concentration in the treatment systems proposed for the site. The second concentration is 350 mg/L and associated with untreated effluent. Model predictions were obtained for each source concentration with and without the existing cattle operation source.

Model results predict that the existing cattle operation source will result in off-site concentrations of approximately 30 mg/L with a concentration of 10 mg/L extending to the west bound of the model.

For the 40 mg/L source, the predicted maximum off site concentration is 1 mg/L with concentrations within the development of approximately 10 mg/L in the low hydraulic conductivity areas and typically up to 0.5 mg/L in the high hydraulic conductivity areas.

For the 350 mg/L source the maximum offsite concentration resulting from the development is proportionally higher. In the northern sections the concentration within the development are up to 10 mg/L. In the southern section the local concentrations are generally in the 30 mg/L range with a maximum off site concentration of 10 mg/L.

The predicted impact from the development is best represented by the 40 mg/L case with a maximum off site nitrate concentration of 1 mg/L. The predicted impact from the development is much less than the present impact from the historic cattle operation.

Source removal in the cattle operation area is recommended. Gradual decreases in nitrate concentrations are anticipated upon removal.

The predicted nitrate impacts are additive to the existing conditions and nitrate that may be present from the upstream development. The area appears fully developed at a lower density than the proposed development. Similar to lower concentrations than predicted in this model are anticipated. There was no evidence of upstream nitrate in the monitoring; however an expanded upstream monitoring system is recommended.

In summary nitrate concentrations off site resulting from the development of less than 1 mg/L are predicted.

Site suitability for adsorption fields was evaluated and tabulated at each bore hole location. The most sensitive soil in the upper 2 m was evaluated. In general all soil logged in the field as "Sand" was supported by laboratory testing to be a suitable soil. Soil logged as clay was generally not suitable without further evaluation. If the clay is within 2 m of the surface, then further evaluation is required. Bore holes with measured or interpreted groundwater elevations within 2 m of surface were identified. In these areas the adsorption field would need to be raised or a mound system employed.

High groundwater table is a potential hazard for basement construction. A map was prepared identifying areas of high groundwater table. Approximately 20 lots are affected. Development in these areas would need to raise the elevation of the basement floor to be above the groundwater table to minimize the potential for groundwater infiltration.

Two storm water detention ponds are proposed. Modeling was conducted to estimate the groundwater inflow to the ponds for various pond water elevations.

Recommendations include:

- Installation of a groundwater monitoring system at the up and downstream boundaries of the site.
- Removal of the impacted surface soil in the area of the cattle operation. Search for and remove buried animal carcasses.
- Conduct site specific adsorption field assessments for each of the disposal sites when the locations are defined.
- Assess site specific groundwater conditions for each building site prior to construction.

Tabl	Table of Contents			
Tran	smittal	l Letter		
Exec	utive S	ummary	i - iv	
Tabl	e of Co	ontents	v, vi	
1.0	Intro	oduction	1	
	1.1	General	1	
	1.2	Scope of Work	1	
	1.3	Authorization	2	
2.0	Prop	posed Development	2	
3.0	Field	l and Laboratory Investigation	3	
	3.1	Field Drilling	3	
	3.2	Groundwater Monitoring	4	
	3.3	Hydraulic Conductivity	5	
	3.4	Surrounding 1 Kilometer Water Well Investigation	6	
4.0	Site	Characteristics	6	
	4.1	Regional Geology	6	
		4.1.1 Regional Stratigraphy	6	
		4.1.2 Site Stratigraphy	12	
	4.2	Groundwater Conditions	12	
5.0	Grou	undwater Transport Modeling	13	
	5.1	Model Realization	13	
	5.2	Modeling Results	16	
	5.3	Infiltration into Storm Water Ponds	19	
6.0	Adso	orption Field Suitability	20	
7.0	Base	ement Elevations	23	
8.0	Reco	ommendations	23	
9.0	Clos	ure	24	

Table of Contents – Cont'd

Symbols and Terms

Bore Hole Logs and Laboratory Test Data

Bore Hole Nos. 101 – 119 Bore Hole Nos. 201 to 213 Summary of Sampling and Laboratory Test Data

Drawings

Drawing No. 01	Site Location Plan
Drawing No. 02	Bore Hole Location and Site Plan
Drawing No. 03	Cross Section A-A', Cross Section B-B'
Drawing No. 04	Cross Section D-D', Cross Section E-E'
Drawing No. 05	1 Kilometer Radius Water Well Location Plan
Drawing No. 06	Ground Water Piezometric Surface
Drawing No. 07	Current Conditions
Drawing No. 08	Development Conditions-40 mg/L Loading with Source at BH203
Drawing No. 09	Development Conditions- 40 mg/L Loading without Source at BH203
Drawing No. 10	Conventional- 350 mg/L Loading Source at BH203
Drawing No. 11	Conventional- 350 mg/L Loading Without Source at BH203
Drawing No. 12	Proposed Conceptual Conditions Drainage Analysis
Drawing No. 13	Typical North Pond Cross Section
Drawing No. 14	Typical South Pond Cross Section

Drawing No. 15 Water Table Depth Plan

Tables

- Table 3.2-1
 Site Groundwater Elevations & Field Measurements
- Table 3.3-1
 Hydraulic Conductivity Results
- Table 3.4-1Surrounding Water Well Elevations
- Table 4.2-1Water and Soil Lab Results
- Table 5.1-1
 Calibrated Hydraulic Conductivities
- Table 6.0-1Summary of Particle Size Analysis & Soil Texture Classification of Upper
Soil Units
- Table 6.0-2Soil Classifications

Figures

- Figure 1 Structure Contour Map on the Cretaceous Bedrock Surface
- Figure 2 Surficial Geology of the Area South of Saskatoon
- Figure 3 West-East Section X-X' Through the Grasswood Area
- Figure 4 Soil Map of the Area South of Saskatoon
- Figure 5 Sensitivity Analysis
- Figure 6 Predicted Ponds Infiltration Rates

Appendix A

FAST ® Wastewater Treatment Systems Data Catalogue Environmental Technology Verification Report

Appendix B

ALS Certificate of Analysis- Draft Report

Appendix C

Graphical Analysis of Hydraulic Conductivity

1.0 Introduction

1.1 General

Clifton Associates Ltd. (CAL) was retained by Urban Elements Development Corporation to conduct a cumulative impact assessment of the proposed 80 lot residential subdivision, namely Grasswood Estates. The objective of the work was to assess the potential impacts of the proposed individual septic systems on the groundwater system. The potential contaminants of concern are constituents of domestic sewage, most notably nitrate. A previous assessment was conducted on this site summarized in "Subdivision Development Investigation Casa Grande" dated August 29, 2008 by Clifton Associates Ltd. This report was commented on by Saskatchewan Public Health and it was determined that further analysis was required.

As quoted by Brent Latimer with the Saskatoon Public Health Region via email:

Due to human health and environmental concerns related to the density of the development, it is recommended that the proponent determine the larger scale environmental impact of this and surrounding developments and to identify an appropriate method of onsite wastewater treatment and disposal...

The proposed Grasswood Estates subdivision (Site) is located 4 km south of Saskatoon, Saskatchewan east of Highway 11 on the corner of Grasswood Road and Preston Avenue. The site location is shown in Drawing 01.

The legal land description is W1/2-26-35-5W3. The land is presently used as hay land but surrounds three residential acreages located near the western border of the Site which currently exist within the section. External land use is predominantly residential with Corman Park School neighbouring the Site to the south west.

1.2 Scope of Work

The objective of this investigation is to characterize the hydrogeologic conditions within the proposed Grasswood Estates subdivision with particular emphasis on the potential impact of groundwater quality resulting from treated effluent disposal in sewage mounds.

The scope of the investigation included the following:

- Review of existing site and regional geology information and compilation of the regional geology;
- Field drilling investigation including installation of piezometers, measurement of groundwater elevation, and response testing to assess soil hydraulic conductivity;
- Identify nearby wells and water sources within a 1 km radius;
- Identify effluent loading rates;
- Development of a fate and transport groundwater model to assess cumulative impacts; and,
- Report the hydrogeologic conditions and the model results.

1.3 Authorization

Authorization to proceed with this work was received from Mr. Darren Hagen, by email dated 25 June 2012.

2.0 Proposed Development

The proposed development consists of 80 lots each averaging 2.47 hectares in size as shown in Drawing 02. Individual waste water systems and a communal water supply system is proposed.

The proposed septic system for use on site is the MicroFast 0.5 Waste Water Treatment System with a Type II mound. System details were provided by Mr. Greg Plett with Tanksmart. System details can be found in Appendix A.

Many parameters are significant when considering effluent impact, such as Biological Oxygen Demand (BOD), Total Suspended Solids (TSS), and nitrates. For the purposes of this analysis, nitrogen was used as the contaminant source to assess cumulative impact.

To calculate the areas that would be subject to loading on each residential lot, direction was provided by Greg Plett with Tanksmart. In summary, the loading area was assumed to be a Type II mound which consists of perforated laterals with a gravel bed and sand media. Loading volumes were based on the estimated volume of flow per day per household. This volume was calculated based on 75 gal/person/day x 1.5 people/bedroom. It was assumed that a 4 bedroom house would be the average in this area, which may be conservative. Calculated volume was 450 gallons per day. Due to using a package treatment system, as per the Saskatchewan Onsite Wastewater Disposal Guidelines, a 30% reduction in the infiltrative surface is required. Actual infiltrative surface area required was calculated to be 450 sq ft/0.63 gallons/sq ft x 0.7. Total surface area of the Type II mound was calculated to be 500 square feet as provided by information provided by TankSmart. A 22.4 ft² footprint was used as the mound dimensions for the purposes of modeling.

Finally, concentration of the effluent needed to be defined. This was based on recommended loading rates according to the On-Site Wastewater Treatment Systems in Subdivisions 29 September 2009 Project No SH/SWA H01-2009 Final Report. Effluent nitrate concentration selected was 40 mg/L as N. TankSmart ® loading rates were discussed in the literature, however a loading rate could not be well defined, therefore to be conservative, the recommended loading rate of 40 mg/L was used.

3.0 Field and Laboratory Investigation

3.1 Field Drilling

The subsurface investigation was conducted in two drilling events dated 26 June 2012 and 28 June 2012. Prior subsurface investigation had been conducted in 2008 by Clifton Associates Ltd., however, an initial site investigation conducted on 24 June 2012 indicated that all previously installed piezometers had been destroyed with the exception of one, namely BH104. As such, updated groundwater data was required in response to the request from Saskatoon Health Region to comply with updated standards for approval.

The drilling and installation of the 200 series of piezometers was conducted using a truckmounted drill rig and 125 mm diameter solid stem continuous flight auger completed from surface to a depth of between 6.0 m to 15.0 m.

Piezometers were logged at 1.5 m intervals and sampled where a change in stratigraphy was noted. Laboratory soil testing consisted of determination of moisture content on all samples, hydrometer particle size analysis and Unified Soil Classifications (USC) were performed on selected samples. Results are provided in **Bore Hole Logs and Laboratory Test Data** appended. The 100 series bore hole logs are included for reference as well.

Piezometers were constructed using 50 mm diameter Schedule 40 PVC pipe with PVC screens. The piezometers were installed with 1.52 m screen length and the screen was surrounded with either frac sand or slough material while the remainder of the annulus was backfilled with bentonite.

Piezometer locations and elevations were determined by GPS RTK survey. They were referenced to a local coordinate system developed on Site.

Observations made during the field investigations, visual descriptions and the results of laboratory tests are recorded in the **Bore Hole Logs and Laboratory Test Data**, and are appended to this report. An explanation of the symbols and terms used in the bore hole logs is included in the **Symbols and Terms** section of this report.

3.2 Groundwater Monitoring

Groundwater elevations were monitored within 6 days of the holes being drilled. Table 3.2-1 presents the groundwater elevation measurements. Water levels ranged from 1.4 m to 5.6 m during the July monitoring program. The bore hole locations are presented in Drawing 02. A summary of the monitor well conditions are included in Table 3.2-1 Site Groundwater Elevations and Field Measurements.

Water samples were obtained from piezometers on the site and chemical analyses conducted. Prior to sampling, the wells were then purged using dedicated bailers. Approximately three volumes of standing water were purged from the groundwater monitor wells.

Groundwater samples were collected from BH104, BH201, BH202, BH203, BH204, BH206, BH207, BH208, BH210, BH211, BH212 and BH213 on 4 July 2012 and were submitted to ALS Analytical Labs, Saskatoon, Saskatchewan. BH209 was dry at time of sampling. Groundwater samples were analyzed for Routine- Potable Water, Health and Toxicity Metals, Total Coliforms including E. Coli and Heterotrophic Plate Count, and BOD. Laboratory results can be found in Appendix B.

Groundwater samples were collected using dedicated bailers and nitrile gloves for each monitor well to reduce any cross-contamination. All samples were preserved with the applicable acid supplied by ALS. The dedicated bailers remain in each monitor well for future monitoring and sampling.

3.3 Hydraulic Conductivity

Falling head (slug) tests were performed in 9 of the piezometers installed in June 2012 (BH201, BH202, BH203, BH204, BH207, BH208, BH210, BH211 and BH212) as well as BH104 from the previous investigation. The test is used to determine the hydraulic conductivity of the soil immediately surrounding the piezometer screen. An automated Solinst levelogger was put down the hole, and a metal slug inserted into the groundwater to raise the water above its equilibrium level. The logger records the falling hydraulic head as it comes back to its equilibrium level. The data was analyzed manually by hand as well as using Waterloo Hydrogeologic Aquifer Test program, and the graphical representations of the Hvorslev method analysis are appended to this report in Graphical Analysis of Hydraulic Conductivity (Appendix C). The hydraulic conductivities of the bore holes including their piezometer tip elevation are included in Table 3.3-1. The piezometers presented in Table 3.3-1 all had their screen interval within a sand stratum, which generally was some silt to silty, and had trace clay. Most of the piezometer were installed in sloughing conditions. Stratified cross-section indicating piezometer depth and associated stratum is provided in Drawings 03 & 04.

Piezometer	Bottom of Piezometer Elevation (masl)	Hydraulic Conductivity (Hvorslev) Aquifer Test (m/s)
BH104	504.1*	3.28E-06
BH201	505.5	1.12E-05
BH202	499.5	6.57E-06
BH203	505.7	1.21E-06
BH204	505.2	1.52E-05
BH207	504.4	4.53E-06
BH208	506.8	1.32E-05
BH210	506.9	1.13E-05
BH211	505.7	1.58E-06
BH212	496.5	1.19E-06
Geometric Mean		4.73E-06

Table 3.3-1Hydraulic Conductivity ResultsGrasswood Hydrogeology

*Adjusted 100 Series Bore hole to updated local coordinate system and elevations (23.5 m vertical variance)

3.4 Surrounding 1 Kilometer Water Well Investigation

Saskatchewan Watershed Authority website indicated that approximately 52 wells were located within 1 km of Site. Attempts to locate these wells occurred between 29 June 2012 and 3 July 2012. As a result, 30 were identified, geo-referenced and tied to the established local coordinate system and groundwater elevations recorded. Results for this investigation are provided in the attached Table 3.4-1 Surrounding Water Well Elevations. See Drawing 05 for locations of the wells.

Pumping activities were not monitored prior to collection of groundwater elevations noted in this report and as such pumping influences were not considered. However, in spite of potential errors due to pumping of domestic wells, a consistent groundwater gradient was established.

Piped domestic water is provided in the east subdivision. The wells present are used for irrigation and non-potable use. Piped domestic water is available in the west subdivision; however it is not clear whether all of the dwellings are connected to the piped system.

4.0 Site Characteristics

4.1 Regional Geology

4.1.1 Regional Stratigraphy

The Grasswood subdivision lies in the Grasswood area south of Saskatoon, about 6 km south of the junction of highways 11 and 16. It lies west of Highway 11, in the southern half of a rectangle bounded on the west by Range Road 3052 (Preston Ave.), on the east by the CNR track, on the south by Township Road 354 (Baker Road) and on the north by Township Road 360 (Grasswood Road).

Most of the area lies just above the 510 m contour elevation. Surface drainage of the site appears to be easterly, into a southeasterly trending series of small sloughs.

The regional stratigraphy was developed from a review of published literature and of regional bore hole logs from the Saskatchewan Watershed Authority water well database.

Bedrock Geology

The youngest underlying rocks belong to the Snakebite Member of the Upper Cretaceous Bearpaw Formation. The Bearpaw Formation is a succession of grey, non-calcareous marine silty shales and minor sandstone deposited during the last transgression of the North American interior seaway. Following withdrawal of the Bearpaw Sea, the area was eroded by rivers draining northeasterly and easterly off the rising Rocky Mountains. These cut a number of buried valleys, including the southeasterly trending Hatfield Valley and its tributaries, the easterly trending Battleford Valley, and the northeasterly trending Tyner and Swift Current valleys. The buried valleys are filled by Tertiary gravels and sands of the Empress Formation. Depth to the top of the Bearpaw Formation is about 145 m in the Grasswood area (Figure 3). Bedrock geology has little or no influence on the surficial geology and hydrogeology of the Grasswood site.

A structural low developed on the Cretaceous bedrock surface south of Saskatoon is called the Saskatoon Low (Figure 1). It is discussed in a later section because it likely formed relatively late during deposition of the surficial deposits. The site is located within the Saskatoon Low as described by Christiansen (2011). The Saskatoon Low is a salt collapse structure where the bedrock has collapsed as a result of dissolution of the Prairie Evaporite Formation. The collapse has been filled with thick sediments of the Battleford Formation till and overlain by glacio-fluvial deposits of the Haultain Formation.

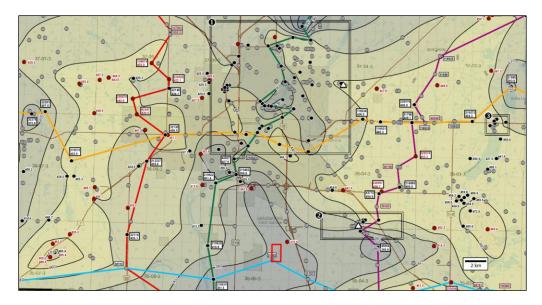


Figure 1 – Structure contour map on the Cretaceous bedrock surface (MDH, 2011). The Casa Grande site is indicated by a red rectangle. Note the extensive structural low south of Saskatoon.

Surficial Geology

Reference bore hole 31902 (Figures 2 and 3) at the junction of Range Road 3052 and Township Road 354 indicates that the southern Grasswood area is underlain by about 95 m of Battleford Formation till; overlain by 30 m of Haultain Formation glacio-lacustrine clay, silt and sand; capped by about 20 m of Pike Lake Formation glacio-lacustrine/glacio-fluvial deposits on which Aeolian dunes have developed (MDH, 2011).

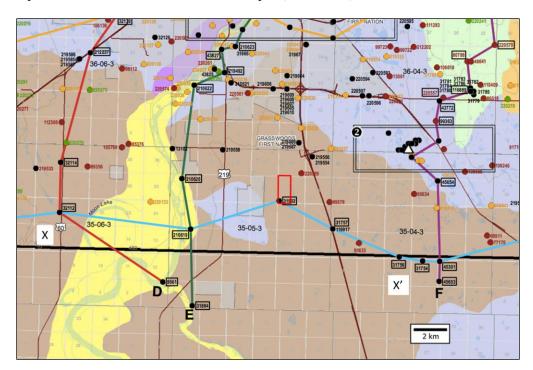


Figure 2 - Surficial geology of the area south of Saskatoon (SK Geological Atlas). The Grasswood area is underlain by undifferentiated Aeolian deposits (brown), whereas most of Saskatoon is underlain by glacio-lacustrine deposits (purple). Fluvial deposits (yellow) are found along the South Saskatchewan River and glacial till (pale green) forms the Strawberry Hills to the northeast. Two reference bore holes (Figure 3) lie within of near the site: Bore Hole 31902 lies near the junction of Range Road 3052 and Township Road 354. Bore Hole 220589 lies west of Range Road 3051 midway between Township roads 354 and 360. Section X-X' (blue line) is shown in Figure 3.

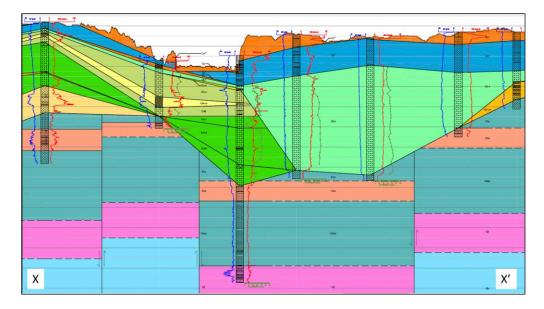


Figure 3 - West-east section X-X' (Figure 2) through the Grasswood area (Excerpt from Section H-H' in MDH, 2011). From west to east, bore holes shown are: 32257, 32112, 210619 (E side of river), 31902, 31757 and 31756. Bore Hole 31902 lies at the southwest corner of the Grasswood subdivision area (Figure 2). Vertical scale lines are 10 m apart. Bedrock units: Lea Park Fm (Klp - pale blue), Judith River Fm (Kjr - magenta), Bearpaw Fm includes Beechy Mbr (Kbby - grey-blue), Ardkenneth (Kba - tan), Snakebite (Kbs - grey-blue) members; Unconsolidated strata: Empress Group (Qte - pale yellow), upper till of Lower Dundurn Fm (Qd-lt - green), Upper Dundurn sand (Qd-us - orange), Upper Dundurn till (Qd-ut = green), Upper Warman till (Qw-t - green), upper till of Lower Floral Fm (Qf-lt olive), Riddell Member (Qf-ms - pale yellow), Upper Floral till (Qf-ut - olive), Battleford sand (Qb-s - yellow), Battleford till (Qb-t - pale green), Lower Haultain silt-sand-gravel (Qh1 brown), Lower Haultain clay-silt-sand (Qh2 - blue), Upper Haultain silt-sand-gravel (Qh3 brown), Lower Pike Lake silt-sand-gravel (Qa1 - brown).

The Battleford till (pale green in Figure 3) is typically soft, massive and oxidized compared to the underlying tills (Christiansen, 1979). Except for a basal gravel-sand unit, which is absent in the Grasswood area, this unit is an aquiclude.

The Haultain Formation (blue in Figure 3) comprises up to 30 m of soft grey silt and clay interbedded with sand. Its contact with the Battleford Formation is commonly gradational. These strata were deposited in deeper parts of the proglacial Lake Saskatchewan as it shifted northerly with the retreating ice front, following the Battleford advance (Figure 2). The type section for the Haultain Formation is a bore hole in SW-4-26-35-5-W3 approximately 800m west of the site. The Haultain Formation consists of interbedded sand/silt and silt/clay facies. The type section describes an upper sand and silt facies extending to a depth of 11.9 m over an upper silt and clay facies extending to a 40.2 m depth. The Haultain Formation overlies till

of the Battleford Formation to a depth approximately 130 m The Battleford Formation is underlain by clay shale of the Bearpaw Formation.

The Pike Lake Formation (orange in Figure 3) comprises up to 19 m of sand and silt deposited in the shallower parts of the proglacial Lake Saskatchewan as it shifted northerly, or in outwash rivers draining into the lake and partly reworked into Aeolian dunes following withdrawal of the lake.

The Haultain and Pike Lake formations form an important near-surface aquifer. Hydraulic conductivity ranges between 2.6 and 22 $\times 10^{-3}$ m/s (MDH, 2011). Transmissivity ranges from 130 to 4,000 m²/d.

As indicated in Figure 3, although the surficial stratigraphy is relatively simple, truncation and removal of the pre-Battleford units indicates a complex depositional history. The unconsolidated strata in the Grasswood area are unusually thick because they overlie part of the Saskatoon Low. This is an extensive solution-collapse structure resulting from solution and removal of about 150 m of the Devonian age Prairie Evaporite (Holter, 1969) and consequent fault collapse of overlying strata. The sheared and faulted pre-Battleford tills and sands were easily bulldozed out of the upper part of the solution collapse structure during the final local ice advance (Christiansen and Sauer, 2001). The resulting depression was filled by the Battleford till, which is locally up to 140 m thick. The basal Battleford gravel and sand is absent in this area (MDH, 2011).

Soils

According to Acton and Ellis (1978) (Figure 4), most of the Grasswood area is underlain by dark brown soils of the Asquith soil association (A6sl-fl/Fa3), developed on gently sloping or roughly undulating, pitted outwash plain (i.e. Pike Lake Formation). The Asquith soils are dark brown chernozems developed on sandy glacial fluvial or lacustrine deposits.

They are weakly to moderately calcareous, low in clay (<15%) and low in organic matter. In contrast with most of the Asquith soil series, which typically have high permeability and are hence well drained with low moisture holding capacity, the A6 sub-unit of the Asquith series, which comprises Carbonated and Saline Chernozemic Dark Brown and Carbonated and Saline Gelysolic soils, are relatively poorly drained.

Small areas in the southwest and northeast are underlain by Dune Sands (**DS1**ls-s/E4 and **DS1**ls-s/E3 respectively) loamy sand and sand developed on undulating proglacial Aeolian plain deposits.

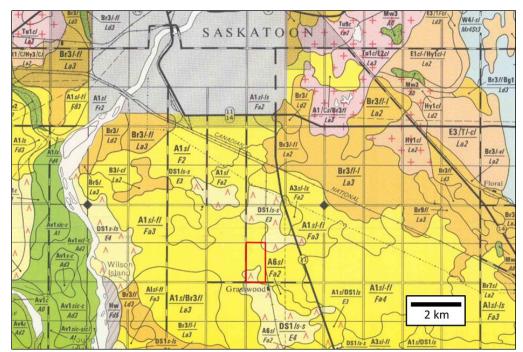


Figure 4 - Soil map of the area south of Saskatoon area (Acton and Ellis, 1978). Most of the Grasswood area (red rectangle) is underlain by dark brown soils of the Asquith soil association (A6sl-fl/Fa3), developed on gently sloping or roughly undulating, pitted outwash plain. Small areas in the southwest and northeast are underlain by Dune Sands (DS11s-s/E4 and DS11s-s/E3 respectively) loamy sand and sand developed on undulating proglacial Aeolian plain deposits.

The Asquith soils are non-plastic; and hence have no reported Atterberg Limit values (Acton and Ellis, 1978). They have a reported shrinkage limit of 16.8.

Only the near-surface Haultain and Pike Lake formations are an important aquifer. The underlying Battleford till is an aquiclude and the basal Battleford sands and gravels are absent in this area.

4.1.2 Site Stratigraphy

The site investigation extended to a depth of 15 m and encountered sediments of the upper sand and silt facies of the Haultain Formation and in some bore holes encountered the upper silt and clay facies of the Haultain Formation. Thin silt and clay beds within the upper sand and silt facies were encountered.

The clay facies is more prevalent to the south. There is between 150 mm to 750 mm of organic topsoil at the surface.

Drawing No. 02 depicts the Bore Hole Location and Site Plan with a stratigraphic cross section index to summarize the lithology of the Site.

Cross Section A-A' to D-D' (Drawing No. 03 and Drawing No. 04) presents further details of geologic Site conditions.

4.2 Groundwater Conditions

A piezometric surface was developed based on local bore hole groundwater elevations as well as from the regional water wells within a 1 km radius of the site. See Drawing No. 05. All groundwater elevations were tied into the local coordinate system developed on Site using RTK GPS data collectors accurate to within five centimeters and referenced to a local coordinate system. A hydraulic gradient was developed based on this surface which was used for modeling purposes.

Drawing 06 presents the piezometric surface for the site and surrounding areas. The groundwater elevation is higher to the northeast and lower to the west indicating an east to west groundwater flow direction. The groundwater gradient is locally flat in the south east area of the site and the adjacent area to the east.

The groundwater sampling results are presented in Table 4.2.1 and the laboratory report attached in Appendix B. Drinking water quality guidelines are presented in Table 4.2.1 for comparison purposes only. Within the development, a communal water supply will be provided and no direct use of groundwater is anticipated.

Geochemistry indicates that exceedances occur most notably groundwater nitrate exceeded the drinking water guidelines in BH203.

Upon investigation of historical land uses, it has been reported that a stock yard was present on Site for a period of 10 years near BH203. Mr. Rick King who is a local to the area reported that there was a cattle and grain farmer in this area for a period of at least 10 years. During this time, a herd of up to 300 head of cattle were managed for long periods of time. Carcasses were reportedly buried on site as well which may create more concerns, particularly BOD loading. He also noted that manure and old hay was disposed in the northwest corner (low area near the pond). Sampling was not completed in this area, as it was not accessible at the time of the Site investigation. This means that there is a potential for a higher nitrate load than 51 mg/L near the north area of the pond. In light of this information, consideration of this area and the associated nitrate loading had to be made in the analysis. Therefore in the area of BH203 a loading area of 5000 m^2 was used to simulate current conditions.

TDS, alkalinity, and chlorides were present in the south area near BH207. These elevated values are interpreted to be associated with concentrations due to groundwater evaporation as the water level is close to ground surface in this area.

Metals exceeded drinking water guidelines in several instances. There was no spatial pattern to the exceedances and no source could be identified. They are presumed to be background conditions at this time.

Coliforms and E. coli parameters exceeded guidelines in many of the bore holes. Although, all care was taken to sample without cross contamination of the sample, these results are suspect and not considered further in this report.

5.0 Groundwater Transport Modeling

5.1 Model Realization

The modeling of the groundwater flow and contaminant transport on the site was conducted by using the Visual MODFLOW 2011 software. Visual MODFLOW is a modeling environment for practical applications in three-dimensional groundwater flow and contaminant transport simulation.

Some of the assumptions made during the development of the model included:

 Source concentration of 40 mg/L and 350 mg/L for the sewage mounds corresponding to treated and untreated effluent.

- Daily sewage flow of 2045 L/day based on a 4 bedroom home.
- 100 year assessment period.
- Effective loaded surface area of each disposal mound of 46 m².
- Effective loading in existing waste pile area near BH203 assumed to be 5000 m².

The topographic survey and collected field information were used to create the modeling domain containing one stratigraphic layer. The top surface of the model represents the surveyed ground surface, as the bottom surface of the model is a plane surface with the assigned elevation of 495 m. The thickness of the layer varies from 12.7 m to 19.4 m. The hydraulic conductivities obtained through the field investigation were used as initial inputs and were subject to adjustment through the groundwater flow calibration process. The groundwater flow model was calibrated to the constant head boundary conditions assigned to the modeling domain sides. The values of the groundwater heads were obtained from the piezometric surface which was created based on the measured ground water elevations.

The model was divided into three regions, north, middle and south to achieve the acceptable calibration and to reflect the bore hole logs data which show that soil of the south and north regions of the site contains more clay than the middle part of it.

Region	Kx, m/sec	Ky, m/sec	Kz, m/sec
North and South	2x10 ⁻⁵	2x10 ⁻⁵	$2x10^{-6}$
Middle	7x10 ⁻⁴	7x10 ⁻⁴	$7x10^{-5}$

 Table 5.1-1

 Calibrated Hydraulic Conductivities

The correlation coefficient between the calculated and observed piezometric surface of 0.909 was attained.

The model space is presented in Drawing 06. A recharge flux of 4% of precipitation was used. It is recognized that this is low for sandy terrain with poorly integrated drainage; however, the low recharge rate is conservative with respect to dilution and contaminant transport.

The model is an advection and dispersion model only. No decay of nitrate was modeled. A longitudinal dispersivity of 10.0 m and a transverse dispersivity of 1.0 m were used.

Visual MODFLOW supports several different versions of the MT3D contaminant transport modeling programs. The MT3DMS program (engine) was used to calculate contaminant transport at the site. MT3DMS is a transport model for simulation advection, dispersion and chemical reactions of contaminants in groundwater flow systems. It solves the advectivedispersive equation and describes the fate and transport of contaminant of species in threedimensional transient groundwater flow system. The upstream finite difference solution method was used to calculate nitrate levels.

The contaminant was introduced into the model by using the recharge concentration boundary conditions assigned to the cells where the contaminant sources will be located, therefore the size of the modeling grid was chosen based of the infiltration area of the contaminant sources. The source was assumed constant through the 100 years of calculation time.

Four scenarios were modeled:

Current Conditions

• This included current nitrate impact (51mg/L) near BH203 after 100 years.

Development Conditions - 40 mg/L Loading with Source at BH203

 This included the package treatment system loading with existing nitrate impact near BH203 after 100 years.

Development Conditions - 40 mg/L Loading without Source at BH203

- This included the package treatment system loading without existing nitrate impact near BH203 after 100 years.
- Conventional 350 mg/L Loading Source at BH203
 - This included the conventional loading (which is comparable to raw sewage) with existing nitrate impact near BH203. The loading used was recommended by Saskatoon Public Health.

Conventional - 350 mg/L Loading Without Source at BH203

 This included the conventional loading system without nitrate impact near BH203 after 100 years.

5.2 Modeling Results

The modeling results are presented in Drawings No. 07 to No. 11.

Drawing 07 presents a model of the current conditions. A nitrate concentration of 51.0 mg/L in BH203 was observed. The source of the nitrate was an historic cattle operation at this location. The existing nitrate was modeled as a source with a constant concentration of 51.0 mg/L over an area of 4650 m². Drawing 07 identifies a predicted westerly trending nitrate plume from this location with a maximum concentration of 50 mg/L (source concentration), in excess of 30 mg/L at the west site boundary and up to 10 mg/L at the west boundary of the model. The measured concentration in BH210 is 0.67 mg/L and the predicted plume, had a measured concentration of 7.1 mg/L. No impact is predicted at this location. This may be the result of another source or the result of a different impacted area than was assumed in the model.

Drawing 08 presents the development condition for a 40 mg/L source loading in addition to the existing conditions. The predicted nitrate concentrations are dominated by the existing nitrate conditions. The extent and nature of the existing plume is essentially unchanged from the existing conditions presented in Drawing 06.

Drawing 09 presents the development condition for a 40 mg/L source loading without the existing conditions. This represents the nitrate loading resulting from the development. The magenta squares are the assumed source mound areas. The predicted nitrate concentrations within the northern portion of the site are in the 0.1 to 0.5 mg/L range with a maximum off site concentration of 0.1 mg/L. In the southern portion of the site where the hydraulic conductivity is lower, the concentrations are approximately 10 mg/L in the immediate vicinity of the source mounds and generally 0.5 to 1.0 mg/L throughout the bulk of the development area. The maximum concentration at the downstream boundary is 1.0 mg/L. The concentrations are higher in the southern area because the hydraulic conductivity is lower and the natural groundwater gradients are lower as well resulting in a less active natural flow system.

Drawing 11 presents the predicted impact for a source concentration of 350 mg/L which is the typical untreated effluent concentration. In the northern section the concentrations are typically in the 1.0 mg/L range with localized concentrations near the mounds up to 10 mg/L. The maximum off site concentration in the northern portion of the site is 1.0 mg/L. In the

southern portion of the site where the groundwater flow system is less active, the concentrations are higher with local concentrations up to 30 mg/L and a general concentration in the order of 10 mg/L. A maximum point concentration of 250 mg/L was observed in the vicinity of BH212 in the extreme south east corner of the site. The maximum off site concentration is just less than 10 mg/L.

Drawing 10 presents the combined existing and 350 mg/L development scenario. Again, the existing plume dominates the off-site concentrations.

The predicted impact from the proposed development is best represented by Drawing 09. The source concentration of 40 mg/L corresponding to treated effluent is used. The maximum predicted off site concentration is 1 mg/L.

The existing impact from the cattle operations far outweighs the significance of the proposed development. Remedial work will be required in this area to remove existing sources of nitrates in order to prepare the lots for sale. This will not remove the impact in the groundwater, but will reduce the source term lead to a reducing nitrate concentration in the plume area.

Due to what appears to be historical land use practices, background concentrations of nitrates currently exceed Saskatchewan Drinking Water Standards and Objectives. In all model scenarios that consider this, which are presented in Drawings 07, 08 and 10 the maximum nitrate concentrations off site remain the same, namely 30 mg/L, the only difference in these models, are the extent of the plumes. The Development Condition Models that do not consider this background nitrate concentration, namely Drawings 09 and 11, effectively model conditions that can exist if this nitrate source is removed. In these scenarios, the proposed development causes a cumulative off site impact which does not exceed 1 mg/L.

All modeling conducted was conservative in an effort to present the worst case scenario. The conservative nature of the parameters used in the modeling are summarized as follows:

- Loading concentrations used in the model Developed Conditions are likely 70% higher than the proposed FAST® Wastewater disposal systems that are proposed to be used.
- Rainfall precipitation was assumed to be 4% of average precipitation which is a conservative value.

• Decay rates were not considered although research has indicated that half-life of nitrate is in the range of 1-2.3 years. Almasri, *et al* (2007).

A Modeling sensitivity analysis was conducted by changing the precipitation rate, longitudinal dispersivity and hydraulic conductivity. The response of concentration to changing of values is presented on Figure 5. The results show that the changing of hydraulic conductivity would affect the concentration in higher rate than changing the rate of infiltration from precipitation or dispersion parameters.

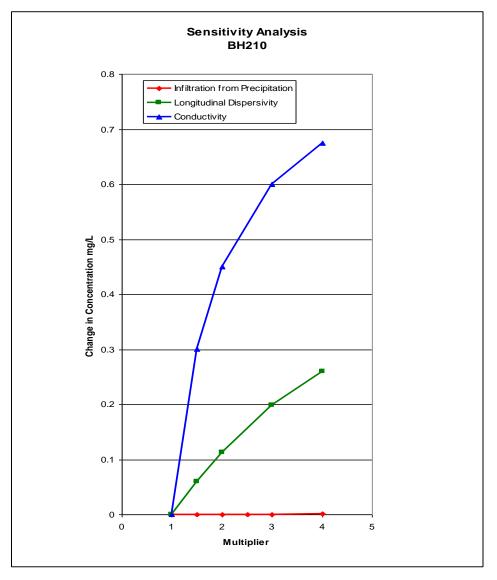


Figure 5- Sensitivity Analysis

The model is a comprehensive model that considers not just flow within the site but also considers groundwater entering the site and leaving the site. The contaminant transport model is additive that is; it predicts the concentration of nitrate that is added to the groundwater system. It assumes that the groundwater entering the site has no nitrate concentration. The upstream development is similar to the proposed development with a lower density. It would be reasonable to assume that similar performance can be expected from the upstream development and that the concentration of nitrate entering the site will be minimal. It will be prudent to monitor and measure the upstream nitrate concentration to confirm this assumption.

In summary, the predicted cumulative effects of the proposed sewage disposal systems results in additional off site nitrate concentrations of approximately 1.0 mg/L. This would be added to the concentration of nitrate entering the site. Monitoring is required to define the concentration entering the site. The upstream community is fully developed and changes in density are not anticipated. The greatest impact arises from the previous cattle operation on the site from which nitrate concentrations of approximately 30 mg/L are predicted to be exiting the development. Monitoring is required to confirm the exit concentrations. Removal of the source material from the cattle operation is anticipated which will result in reduced concentrations in the future.

5.3 Infiltration into Storm Water Ponds

Storm water ponds in the north and south of the development are proposed. Drawing 12 shows the proposed location of the ponds and Drawings 13 & 14 show the proposed cross section and operating conditions

To evaluate infiltration from the proposed retention ponds the lake boundary conditions feature of MODFLOW were assigned to the areas were the North and South ponds are proposed to be constructed. The lake boundary condition of MODFLOW allows simulation of the effects of stationary surface-water bodies such as lakes and reservoirs on the groundwater system. To evaluate the seepage from groundwater to the ponds the model was run with different ponds water elevations. The results are shown in Figure 6. It should be mentioned that the average for the site hydrogeological properties of the soils are incorporated into the model. The spot conditions could be quite different, for instance, at the North Pond location sand layer prevails, as at the South Pond location silty clay layer was found. Therefore the infiltration rate to the South Pond is expected to be less than it is calculated.

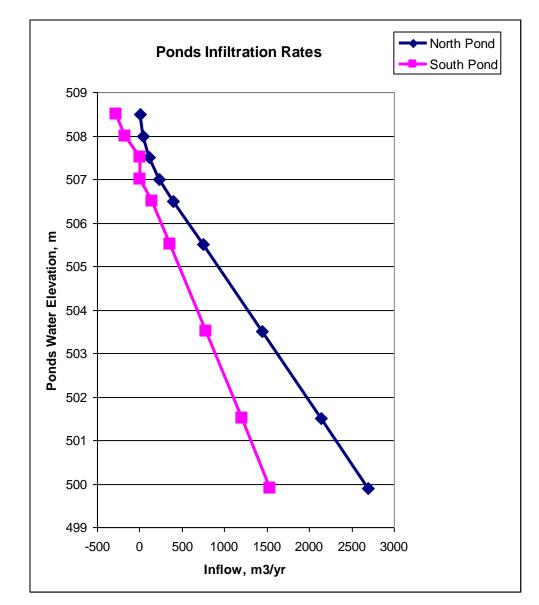


Figure 6 - Predicted Ponds Infiltration Rates

6.0 Adsorption Field Suitability

Criteria for adsorption field suitability are provided by Saskatchewan Ministry of Health (2009). The criteria include:

- The minimum depth from the base of the field to the water table is 1.5 m.
- Clay textured soils are not suitable for adsorption field. Guidance is provided for allowable adsorption rates for more coarsely textured soils.

Results of hydrometer testing on select samples for the 200 bore hole series are presented below.

Soil Type	Bore Hole Number	Sample Number	Depth	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Soil Texture as per SOWDG & USDA
Sand	BH201	CF27	1.5 m	0.0	74.6	8.1	17.3	Sandy Loam
						0.12		
Clay	BH203	CF32	1.2 m	0.0	36.1	35.5	28.4	Clay Loam
Silt	BH204	CF35	8.5 m	0.0	31.8	51.6	16.7	Silty Loam
Sand	BH209	CF20	1.6 m	0.0	65.5	19.7	14.9	Sandy Loam
Clay	BH213	CF23	3.1 m	0.0	3.9	60.7	35.4	Silty Clay Loam
Sand	BH203	CF33	3.1 m	0.0	75.1	15.0	9.9	Sandy Loam
Sand	BH212	CF2	4.1 m	0.0	70.0	14.0	16.1	Sandy Loam

Table 6.0-1Summary of Particle Size Analysisand Soil Texture Classification of Upper Soil Units

The maximum depth of burial of the adsorption field tile is 600 mm. The water table must be 1.5 m below the tile for a total maximum depth to the water table of approximately 2 m below the ground surface.

The depth to the water is provided in Drawing 15. The drawing was developed by interpolation of the groundwater surface between bore holes and subtracting this surface from the surveyed ground surface. Green areas have a depth to the water table of greater than 2 m and are suitable from a depth to groundwater perspective. Yellow areas are marginal and orange and red areas are unsuitable. In the unsuitable areas, the adsorption field can be elevated on fill or as an alternative a mound constructed. The groundwater constraint affects approximately 20 lots.

The soil texture constraint is summarized in Table 6.0-2 Soil Classifications. Data is available at bore hole locations but data at individual lots is not available. Refer to **Bore Hole Logs and Laboratory Test Data** for the stratigraphy at each bore hole and summarized laboratory testing performed to characterize the soil. The Unified Classification consists of a measurement of the amount of soil of silt plus clay sizes as well as the plasticity characteristics of the soil. The textural classification measures the silt and clay content as required in the Saskatchewan Ministry of Health (2009) document. Soils that have a primary classification of "clay" require further investigation to assess the suitability as provided by Appendix 15 of the Ministry of Environment (2009). The sand on site is fine grained and silty. It is classed as SM (silty sand) under the unified system and sandy loam or loamy sand under the textural system. Where only unified classification exists, it was assumed that all of the fines are silt and the textural classification assigned accordingly. This is consistent with the cases where a full textural classification was available. In all cases, the laboratory testing confirmed that soils logged in the field as "Sand" were suitable for a disposal field.

No guidance is provided on the effects of stratification on the suitability of the soil by the Saskatchewan Ministry of Health (2009). Froese (2009) suggests that the retention time in the vadose zone should be approximately 60 days. The design infiltration rate for a silty loam is $0.28 \text{ gal/day/ft}^2$ which is equivalent to a vertical flow velocity of 1.1×10^{-7} m/sec. A somewhat higher infiltration rate was used in the flow modeling as this is a conservative assumption with respect to nitrate transport. The saturated hydraulic conductivity of the sand averaged 4.73E-06. Under gravity drainage conditions, the vertical gradient is unity. The infiltration rate (water applied) is less than the measured hydraulic conductivity of the sand (ability to transmit water under unity gradient). As a result, unsaturated soil conditions can be anticipated under the adsorption field. For the purposes of assessing soil suitability under stratified conditions, the most restrictive soil within 2 m of surface was selected for the site suitability. For example, if a clay was encountered at a depth of 1.5 m then, the suitability was related to the clay soil. If the clay was encountered at a depth of 2 m or greater, then the overlying sand was used to assess the site suitability.

Sites with more than 2 m of surface sand were classified as "Suitable". In cases where clay was at surface or within 2 m of surface, the site suitability was classified as "Further Testing". Bore hole locations where the water table is less than 2 m depth was noted as a groundwater limitation. For those bore holes with no direct measurement of water depth, the depth of water map (Drawing 15) was consulted and if the interpreted water table was less than 2 m deep then a groundwater comment of "Potential Groundwater Limitation" was provided.

Note that the assessment is valid at the bore hole locations only. Conditions may vary locally.

7.0 **Basement Elevations**

In some areas of the development the groundwater table is above the normal basement excavation depth. Drawing 15 shows the approximate depth to groundwater. In areas with high groundwater, some filling of the building location may be required to keep the basement above the groundwater elevation. Site specific investigations are recommended to establish the groundwater elevation at the building locations.

8.0 **Recommendations**

Existing conditions of the site appear to have background impact from several potential sources. In terms of nitrogen impacts, there does not appear to be a concern for cumulative impact due to the subdivision development. This assumption is based on available data presented from the subsurface investigation. However, it would be prudent to assess the following to manage and mitigate existing conditions on Site:

- Monitor upstream flow onto the Site, namely place piezometers on the eastern border of the Site for all parameters noted in this report.
- Monitor the downstream water quality in general and specifically in those areas where the cattle operation plume is predicted.
- Delineate and remove the source of nitrogen in the north area, around BH203 and area where reported manure disposal occurred to prevent further impact and improve the aesthetic features of the land.
- Continuing groundwater monitoring to evaluate current Site conditions.
- Site specific investigations are needed for the adsorption field and water depth at building locations.

9.0 Closure

This report was prepared by Clifton Associates Ltd. for the use of the Urban Elements Development Corporation and their agents for specific application to the proposed Grasswood Subdivision. The material in it reflects Clifton Associates Ltd. best judgment available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Clifton Associates Ltd. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

This report has been prepared in accordance with generally accepted engineering practice common to the local area. No other warranty, expressed or implied, is made.

Our conclusions and recommendations are preliminary and based upon the information obtained from the referenced subsurface exploration. The bore holes and associated laboratory testing indicate subsurface and groundwater conditions only at the specific locations and times investigated, only to the depth penetrated and only for the soil properties tested. The subsurface conditions may vary between the bore holes and with time. The subsurface interpretation provided is a professional opinion of conditions and not a certification of the site conditions. The nature and extent of subsurface variation may not become evident until construction or further investigation. If variations or other latent conditions do become evident, Clifton Associates Ltd. should be notified immediately so that we may re-evaluate our conclusions and recommendations.

The enclosed report contains the results of our investigations as well as certain recommendations arising out of such investigations. Our recommendations do not constitute a design, in whole or in part, of any of the elements of the proposed work. Incorporation of any or all of our recommendations into the design of any such element does not constitute us as designers or co-designers of such elements, nor does it mean that such design is appropriate in geotechnical terms.

The designers of such elements must consider the appropriateness of our recommendations in light of all design criteria known to them, many of which may not be known to us. Our mandate has been to investigate and recommend which we have completed by means of this report. We have had no mandate to design, or review the design of, any elements of the proposed work and accept no responsibility for such design or design review.

Clifton Associates Ltd.

David D. Kent, P.Eng.

Cindy Friesen, Geoscientist in Training

Association of Professional Engineers of Saskatchewan Cert. of Authorization No. 238

List of References

Acton, D.F. and Ellis, J.G., 1978: Soils of the Saskatoon Map Area (73B), Saskatchewan, Saskatchewan Institute of Pedology, Publication S4, 145p.

Almasri, Mohammad N., Kaluarachchi, Jagath J. Modeling nitrate contamination of groundwater in agricultural watersheds. Journal of Hydrology. 2007.

Christiansen, E.A. 1970. Physical Environment of Saskatoon. National Research Council Publication 11378.

Christiansen, E.A., 1979: Geology of the Saskatoon Region, Saskatchewan; Report for Saskatchewan Municiapl Affairs, 62p.

Christiansen, E.A. and Sauer, E. K., 2001: Stratigraphy and structure of a Late Wisconsinan salt collapse in the Saskatoon Low, south of Saskatoon, Saskatchewan, Canada: an update; Canadian Journal of Earth Sciences, vol. 38, p. 1601-1613.

Christiansen, E.A. 2011. Stratigraphy and structure of a Late Wisconsinan salt collapse in the Saskatoon Low, south of Saskatoon, Saskatchewan, Canada: an update. Can. J. Earth Sci: 38: 1601-1613.

Clifton Associates Ltd. 2008. Subdivision Development Investigation Casa Grande, Grasswood Saskatchewan. A report submitted to Neil Ketilson, 29 August 2008.

Froese, K., K. Frankowski, C Ryan, A, Chu. 2009. On-Site Wastewater Treatment Systems in Subdivisions.

Google Earth aerial photographs historical imagery, 2002 through to 2011.

Holter, M.E., 1969: The Middle Devonian Prairie Evaporite of Saskatchewan; Saskatchewan Geological Survey, Report 123.

MDH Engineered Solutions, 2011: Hydrogeology Mapping of NTS Mapsheet Saskatoon 73B; Saskatchewan Watershed Authority, 81p, plus maps and sections.

Saskatchewan Ministry of Health. 2009. Saskatchewan Onsite Wastewater Disposal Guide. Second Edition, January 2009. Saskatchewan Watershed Authority, Geology of the Saskatoon Region Map (73 B) area. http://www.swa.ca/WaterManagement/GwMaps/73B_H-H'.pdf

Saskatchewan Watershed Authority, 3 July 2012. Water Well database search Well GIS Data Portal. <u>https://gis.swa.ca/</u>

Symbols and Terms

Soil Descriptive Terms

A soil description for geotechnical applications includes a description of the following properties:

- texture
- color, oxidation
- consistency and condition
- primary and secondary structure

Texture

The soil texture refers to the size, size distribution and shape of the individual soil particles which comprise the soil. The Unified Soil Classification System (ASTM D2487-00) is a quantitative method of describing the soil texture. The basis of this system is presented overleaf. The following terms are commonly used to describe the soil texture.

-	article Size IM D2487-00)	Relative Proportions (CFEM, 3rd Ed., 1992)		
Boulder	300 mm plus	Trace	1 - 10 %	
Cobble	75 - 300 mm	Some	10 - 20 %	
Gravel Coarse Fine	4.75 - 75 mm 19 - 75 mm 4.75 - 19 mm	Gravelly, sandy, silty, clayey, etc.	20 - 35 %	
Sand Coarse Medium	0.075 - 4.75 mm 2 - 4.75 mm 0.425 - 2 mm	And	>35 %	
Fine Silt and Clay	0.425 - 2 mm 0.075 - 0.425 mm Smaller than 0.075 mm	Gravel, Sand, Silt, Clay	>35 % and main fraction	

Gradation

Particle Shape

Well Graded	Having a wide range of	Angular	Sharp edges and relatively	
	grain sizes and substantial amount of all intermediate sizes. Possessing particles of	, ungular	plane sides with unpolished surfaces.	
Uniform or		Subangular	Similar to 'angular' but have rounded edges.	
Poorly Graded Gap Graded		Subrounded	Well-rounded corners and edges, nearly plane sides.	
ľ		Rounded	No edges and smoothly curved sides.	
		Also may be	Also may be flat, elongated or both.	

The term "TILL" may be used as a textural term to describe a soil which has been deposited by glaciers and contains an unsorted, wide range of particle sizes.

Color And Oxidation

The soil color at its natural moisture content is described by common colors and, quantitatively, in terms of the Munsell color notation; (eg. 5Y 3/1). The notation combines three variables, hue, value and chroma to describe the soil color. The hue indicates its relation to red, yellow, green, blue and purple. The value indicates its lightness. The chroma indicates its strength of departure from a neutral of the same lightness.

Departure of the soil color from a neutral color indicates the soil has been oxidized. Oxidation of a soil occurs in a oxygen rich environment where most commonly metallic iron, oxidizes and turns a neutral colored soil 'rusty' or reddish brown. Oxidized manganese gives a purplish tinge to the soil. Oxidation may occur throughout the entire soil mass or on fracture/joint/fissure surfaces.

							ineering Purpos	
Majo	or divisio	ns	Group Symbols	Typical names			Classification criter	ia
	raction .75 mm)	Clean gravels <5% fines	GW	Well-graded gravel	oup name		$C_u = \frac{D_{60}}{D_{10}} \ge 4;$ $C_c = \frac{1}{10}$	$\frac{(D_{30})^2}{D_{10} X D_{60}}$ between 1 and 3
mm)	s f coarse f sieve(≥4	Clean grave <5% fines	GP	Poorly graded grave	sand" to gro	ons Sumbole	Not meeting either C _u or	C _c criteria for GW
* (>0.075	Gravels More than 50% of coarse fraction retained on No. 4 sieve(≥4.75 mm)	Gravels with fines >12% fines	GM	Silty gravel	lf ≥ 15% sand add "with sand" to group name	on basis of percentage of fines No. 200 sieveGW, GP, SW, SP ss No. 200 sieveGM, GC, SM, SC 200 sieveborderline classifications	Atterberg limits below "A" line or PI less than 4	Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols
ed soils 200 sieve	More th retainec	Gravels with fi >12% fines	GC	Clayey gravel	lf ≥ 15% sa	centage o GW, G GM, G orderline o	Atterberg limits on or above "A" line and PI > 7	If fines are organic add "with orgnic fines" to group name
rse-graine ed on No.	ion mm)	sands ines	SW	Well-graded sand	roup name	sis of per 30 sieve 200 sieve eveB		$\frac{(D_{30})^2}{D_{10} \times D_{60}}$ between 1 and 3
Coa % retaine	Sands e of coarse fraction 4 sieve(<4.75 mm)	Clean sands <5% fines	SP	Poorly graded sand	gravel to g	on on ba ss No. 20 ass No. o. 200 si	Not meeting either C _u or	C _c criteria for SW
Coarse-grained soils More than 50% retained on No. 200 sieve* (>0.075 mm)	Sai Nore of coa No. 4 sieve	ith fines ines	SM	Silty sand	gravel add "with gravel to group name	Classification on basis of percentage of fines Less than 5% pass No. 200 sieveGW, GP, SW, SP More than 12% pass No. 200 sieveBorderline classificatio 5 to 12% pass No. 200 sieveBorderline classificatio	Atterberg limits below "A" line or PI less than 4	Atterberg limits plotting in hatched area are borderline classifications requiring use of dual symbols
Moi	50% or more passes No. ²	Sands with fines >12% fines	SC	Clayey sand	lf≥15% gra	Less th More th 5 to 12	Atterberg limits on or above "A" line and PI > 7	If fines are organic add "with orgnic fines" to group name
(mr	s %	ji	ML	Silt	opriate iid limit		Plasticity Char	
e* (≤0.075 mm)	Silts and Clays iquid limit <50%	Inorganic	CL	Lean Clay -low plasticity	gravel" as appropriate s appropriate of undried liquid limit	Ec	i LL=16 to PI=7, then PI=0.9(LL- puation of A-Line: Horizontal PI=4 to 25.5, then PI=0.73(LL-2	
Fine-grained soils sses No. 200 sieve	Silts a Liquid	Organic	OL	Organic clay or silt (Clay plots above 'A' Line)	sand" or "with or "gravelly" as d limit is < 75%	40	3	10 to
Fine-gr asses No	ays 50%	nic	ΜН	Elastic silt	d, add "with Idd "sandy" n dried liqui	sticity	U' Line	'A' Line
Fine-grained soils 50% or more passes No. 200 sieve*	Silts and Clays Liquid limit ≥50%	Inorganic	СН	Fat Clay -high plasticity	If 15 to 29% coarse-grained, add "with sand" or "with gravel" as ap If > 30% coarse-grained , add "sandy" or "gravelly" as appropriate Class as organic when oven dried liquid limit is < 75% of undried li	10		OH or MH
50		Organic	ОН	Organic clay or silt (Clay plots above 'A' Line)	If 15 to 29% If > 30% cc Class as or		10 20 30 40 50 6	0 70 80 90 100
	Highly organic	soils	PT	Peat, muck and other highly organic soils			16 Liquid Limit (
*Based	on the mat	erial pass	sing the 3 in.	(75 mm) sieve, if field samples	contain co	bbles or boulder	s, add "with cobbles or boulders	" to group name

L Clifton Associates Ltd. -

Consistency And Condition

The consistency of a cohesive soil is a qualitative description of its resistance to deformation and can be correlated with the undrained shear strength of the soil. The condition of a coarse grained soil qualitatively describes the soil compactness and can be correlated with the standard penetration resistance (ASTM D1586-99).

Consistency Of Cohesive Soil (CFEM, 3rd Edit., 1992)

Consistency	Undrained Shear Strength (kPa) (CFEM, 3rd Edt., 1992)	Field Identification (ASTM D 2488-00)
Very Soft Soft	<12 12-25	Thumb will penetrate soil more than 25 mm
Firm	25-50	Thumb will penetrate soil about 25 mm. Thumb will indent soil about 6 mm.
Stiff	50-100	Thumb will indent, but penetrate only with great effort (CFEM).
Very Stiff	100-200	Readily indented by thumbnail (CFEM).
Hard	>200	Thumb will not indent soil but readily indented with thumbnail.
Very Hard	N/A	Thumbnail will not indent soil.

Condition Of Coarse Grained Soil (CFEM, 3rd Edt., 1992)

Compactness Condition	SPT N - Index (Blows/300mm)
Very Loose	0 - 4
Loose	4 - 10
Compact	10 - 30
Dense	30 - 50
Very Dense	over 50

Moisture Conditions (ASTM D2488-00)

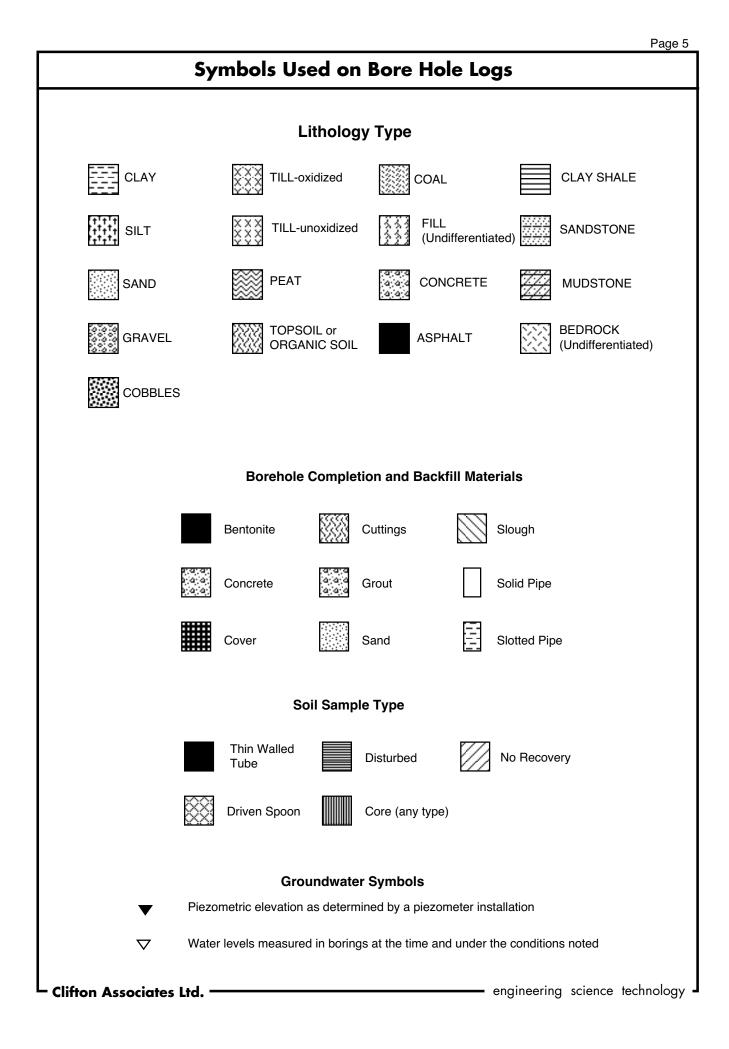
Description	Criteria
Dry	Absence of moisture, dusty, dry to touch
Moist	Damp but no visible water
Wet	Visible, free water, usually soil is below water table

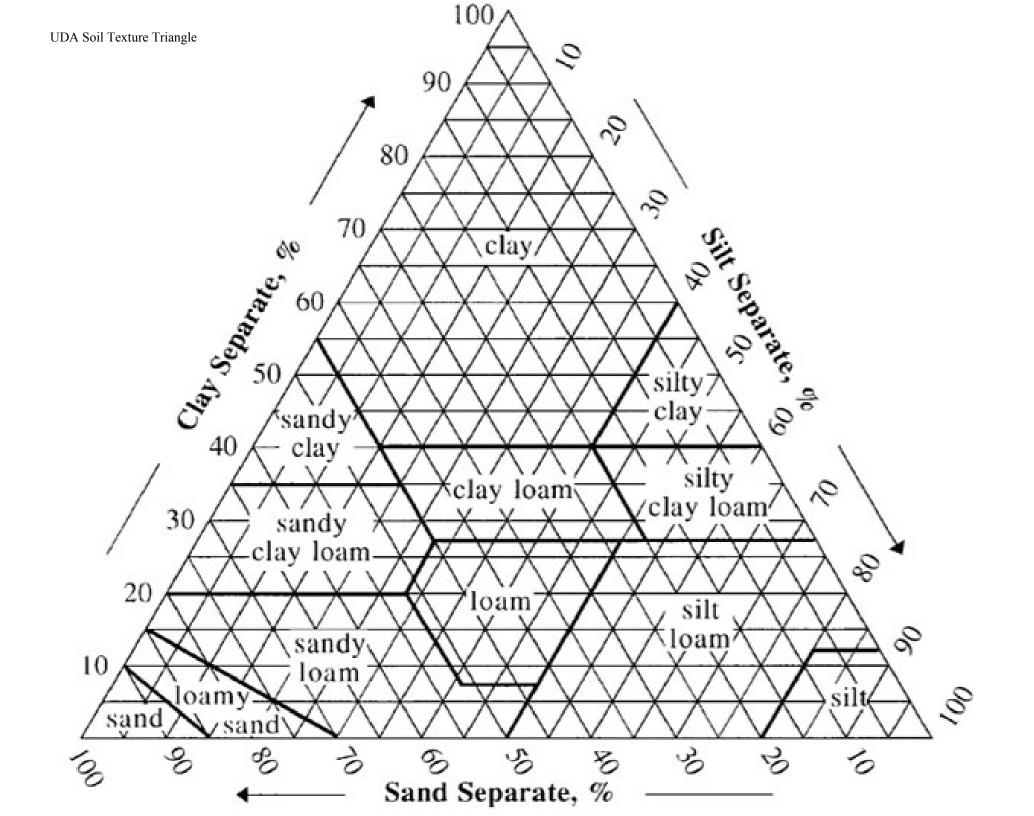
Structure

The soil structure is the manner in which the individual soil particles are assembled to form the soil mass. The primary soil structure is the arrangement of soil particles as originally deposited. The secondary soil structure refers to any rearrangement of the soil such as deformation and cracking which has taken place since deposition.

Primary Soil Structure (Depositional)

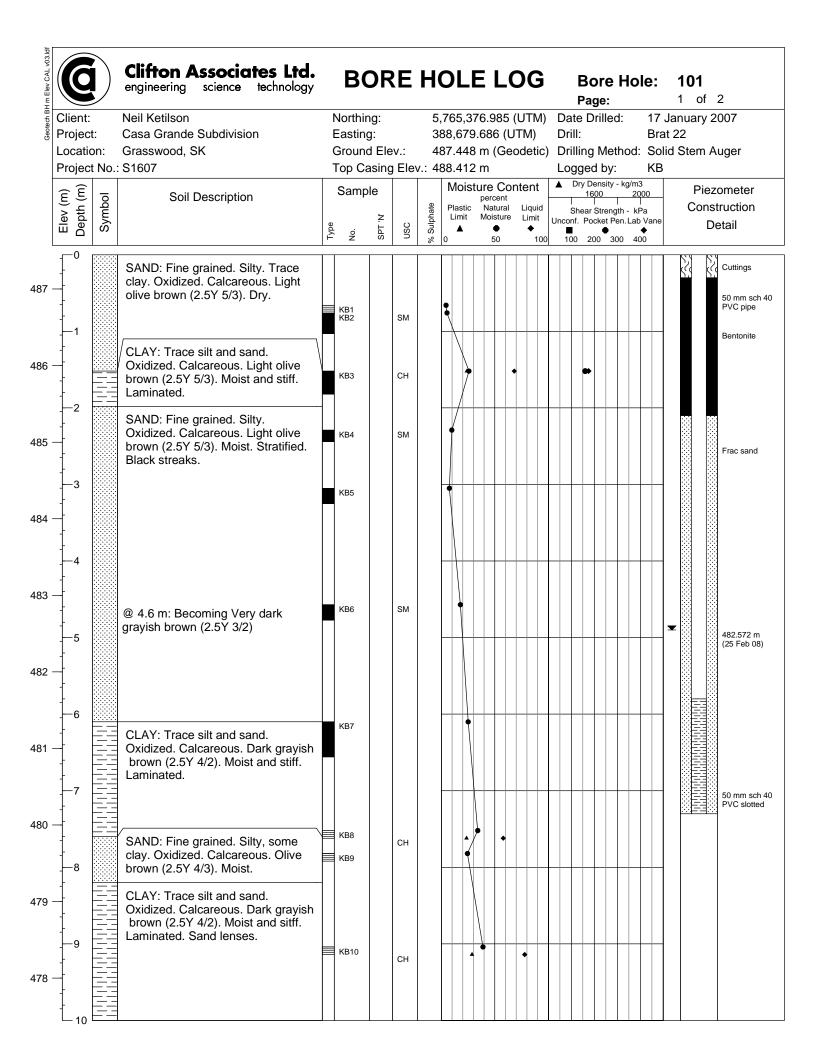
A. Geometry		
Stratum	-	A single sedimentary 'layer', greater than 10 mm in thickness, visibly separable from other strata by a discrete change in lithology and/or sharp physical break.
Homogeneous	-	Same color and appearance throughout.
Stratified	-	Consisting of a sequence of layers which are generally of contrasting texture or color.
Laminated	-	Stratified with layer thicknesses between 2 mm and 10 mm.
Thinly laminated	-	Stratified with layer thickness less than 2 mm.
Bedded	-	Stratified with layer thicknesses greater than 10 mm.
Very Thinly Bedded (Flaggy)	-	Stratified with layer thicknesses between 10 and 50 mm.
Thinly Bedded (Slabby)	-	Stratified with layer thicknesses between 50 and 600 mm.
Thickly Bedded (Blocky)	-	Stratified with layer thicknesses between 600 and 1200 mm.
Thick-Bedded (Massive)	-	Stratified with layer thicknesses greater than 1200 mm.
Lensed	-	Inclusions of small pockets of different soils, such as small lenses of sand material throughout a mass of clay.
B. Bedding Structures	5	
Cross-bedding	-	Internal 'bedding' inclined to the general bedding plane.
Ripple-bedding	-	Internal 'wavy bedding'.
Graded-bedding	-	Internal gradation of grain size from coarse at base to finer at top of bed.


Horizontal bedded - Internal bedding is parallel and flat lying


Secondary Soil Structure (Post-Depositional)

A. Accretionary Structures

Includes nodules, concretions, crystal aggregates, veinlets, color banding and


Cementation	- Chemically precipitated material, commonly calcite (CaCO ₃), binds the grains of soil, usually sandstone. Described as weak, moderate, strong (ASTM D2488-00).
Salt Crystals	 Groundwater flowing through the soil/rock often precipitates visible amounts of salts. Calcite (CaCO₃), glauber salts (Na₂Ca(SO₄)₂), and gypsum (CaSO₄*2H₂O) are common.
B. Fracture	Structures
Fracture	 A break or discontinuity in the soil or rock mass caused by stress exceeding the materials strength.
Joint	 A fracture along which no displacement has occurred.
Fissure	 A gapped fracture, which may open and close seasonally. Usually an extensive network of closely spaced fractures, giving the soil a 'nuggetty' structure.
Slickensides	 Fractures in a clay that are slick and glossy in appearance, caused by shear movements.
Brecciated	 Contains randomly oriented angular fragments in a finer mass, usually associated with shear displacements in soils.
Fault	- A fracture or fracture zone along which there has been displacement.
Blocky	- A cohesive soil that can be broken down into small angular lumps which resist further breakdown.

Bore Hole Logs and Laboratory Test Data

Geotech BH m Elev CAL v03.ld1	G			B	OR	RE	H	0	LE	ΞI	LC)G	Ì		Bo Pag		Ho	ole:		101 2 of	2	
Geotech BH	Client: Project: Locatior Project	n:	Casa Grande Subdivision Grasswood, SK		Northir Easting Ground Top Ca	g: d Ele		38 48	88, 87.	679. 448	686 m (85 (U 6 (U Geo	TM)	c)	Dat Drill Drill	e Di :	rille Me	thoc	Br	' Jai at 2 olid 3	nuary 2	007
		Symbol	Soil Description	Type	Samp		USC	% Sulphate	Pla Li	astic	perce Natu Mois 50	ural sture	Liqui Limit	d	SI nconf	160 near S . Poc	00 Streng ket P	 gth - I	000 kPa b Vano ∳	e	Cons	ometer truction etail
-777 -776 -775 -774 -773 -772 -771 -770 -699 -688	- 11 - 12 - 12 - 13 - 13 - 14 14 		CLAY: Trace silt and sand. Oxidized. Calcareous. Dark grayish brown (2.5Y 4/2). Moist and sitff. Laminated. Sand lenses. SILT: Sandy, trace clay. Oxidized. Calcareous. Very dark grayish brown (2.5Y 3/2). Moist and stiff. Dilatant. NOTES: 125 mm continuous flight auger used. Seepage @ 4.6 m.		KB11		СН															

BH m Elev CAL v03.ld	6		Clifton Associates Ltd. engineering science technology		B	DF	RE	H	0	LE	L	.00	6		ore	Hc	ole:	10 2 1	2 of 1	
Geotech Br	-	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	 (Northir Easting Ground Top Ca	g: d Ele		3 4	88, 90.	,709.: .021 i	567 (m (G	0 (UTN (UTM) eodeti	ic)	Date Drill: Drillin Logge	Drille g Me ed by	ethod /:	Bra : So KB	at 22 Iid Ste	ry 2007 m Auger	
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	N. Lds	nsc	% Sulphate	PI	astic	re C Dercen Natura Moistur 50	al Liqui re Limi I	id	1	600 I r Strer ocket	 Igthk Pen.La	000 .Pa b Vane ∳	c	Piezometer onstruction Detail	
490	0 1 1		SAND: Fine grained. Silty, trace clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Dry and compact. Homogeneous.		KB13 KB14	14			•											
488	- - - 2				KB15 KB16	13			•											
				X		17														
487	3 				KB19 KB20	16														
486	4 4				KB21 KB22	18														
485	5 5 		CLAY: Trace sand and silt. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist and very stiff. Laminated. Iron staining. Silt partings. Lensed with sand.		NDZZ	10														
484	6 6 				KB23 KB24					•										
483	- 7 -		NOTES: 125 mm continuous flight auger used. No sloughing.																	
482	8 8 																			
481	- 9 -																			
	- 10																			

		Clifton Associates Ltd. engineering science technology)G			Pag	je:	Но			103 1 of	
Client: Project Location Project	rt: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607		Northii Eastin Groun Top Ca	g: d Ele		3 4	88,	747	.079	9 (U	UTM FM) detic	, (;	Drill Drill		Me	thoc	Br	at 2 blid	nuary 2 2 Stem A	
Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	ole N. Lds	USC	% Sulphate	Pl L	loist astic imit ▲	Ure perce Nate Mois	ural ture	Liquid Limit	Ur	Sł nconf.	160 l near S Poc	00 Stren ket F	 gth - I	1000 √Pa b Vane	e	Cons	ometer truction etail
		SAND: Fine grained. Some silt and clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Moist. Homogeneous.		KB25				•													
- - - - -	+ + + + + + + + + + + + + + + + + +	SILT: Some clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.	_	KB27					•										-		
- - - 3	+ + + + + + + + + + + + + + +	SAND: Fine grained. Silty, some clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.		KB28				•											-		
- - - - - - - - - - - - - - - - - - -	+ + + + + + + + + + + + + + + + + + +	SILT: Some clay, trace sand. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogenous. Iron staining.	\																_		
- - 5	+++++++++++++++++++++++++++++++++++++++	clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous. SILT: Some clay, trace sand.		KB29					•										-		
	+ + + + + + + + + + + + + + + + + + +	Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogenous.		КВ30				•													
		SAND: Fine grained. Silty, some clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.																			
-7 		NOTES: 125 mm continuous flight auger used. No sloughing.																			
- 																					
- - - - -																					

BH m Elev CAL v03.ld	6		Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	OL	_E	Ľ	OG	ì	Bo Pag		Hole	e:	104 1 of	[:] 1	
Geotech	Client: Project Location Project	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607		Northir Easting Ground Top Ca	g: d Ele		3 4	89,0 89.0	77.5 12 r	547 (n (G	5 (UTM (UTM) eodetic	Dr Dr	ate D ill:	rilled Meth	nod:	Brat	anuary 22		
-	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp		usc	% Sulphate	Plas Lim 0	r stic nit N	re C bercen Natura Moistur 50	al Liquid	Unco	nf. Poc	00 Strengt ket Pe	kg/m3 2000 I h - kPa n.Lab V ∳ 0 400	ane	Cor	ezometer Instructior Detail	
489 - 488 -	0 1 		SAND: Fine grained. Silty, some clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Moist. Homogenous.		KB31		SM		•									ૻૻઽૻૼઽૻઽૻૼઽૻ૱	50 mm s PVC pip	
487 -	- - 2 -		CLAY: Silty, sandy. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Moist. Hard. Homogeneous.		КВ32 КВ33		CL		•		•							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
486 -	3 		@ 3.04m: Trace sand. Iron staining. Silt partings.		KB34 KB35		СН					•			++•	+			Bentonit	e
484 -	- - - - - - - - -		SAND: Fine grained. Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Moist. Iron and Manganese staining.		KB36 KB37		SM		•						++•	+			Frac sar	nd
483 -	6 6 		@ 6.1m: Clayey.		KB38															
482 -	- - - - - -				KB39		SM			•									482.262 (19 Marc 50 mm s PVC slo	ch 08) sch 40
481 -	8 9				KB40															
	- - - - -		NOTES: 125 mm continuous flight auger used. Sloughing @ 5.8 m. Seepage @ 5.8 m.		1 1040															

Client: Projec Locati Projec	:t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607		Northi Eastin Groun Top C	g: d Ele		38 48	89,0)77.	457	(UT	JTM) M) detic)	Dr Dr Lo	ate [ill: illing gge	d by	thoc :	Br I: So Kl	at 2 blid \$	nuary 2 2 Stem A	
Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp 	ole N. Lds	nsc	% Sulphate	Pla: Lin	stic nit	Dire (perce Natu Moist 50	nt ral ure	Eiquid Liquid Limit 100	Unco	1 Shea nf. P	Density 600 r Streng Docket P 200 3	gth - I Pen. La	2000 I kPa ib Van	e	Const	ometer truction etail
0 1 1 		CLAY: 300 mm organic material. Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/6). Moist. Homogeneous. SAND: Fine Grained. Silty, some		KB41				•										_		
- - - - - - - - - - - - - - - - - - -		clay. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Stratified.		KB42 KB43				•										_		
- 3 				KB44			-													
- 4 				KB45					ł									_		
5 6				KB46														_		
- - - - - 7		NOTES: 125 mm continuous flight auger used. Sloughing @ 4.3 m. Seepage @ 4.3 m.		ND40			-													
- - - - - - 8																				
- - - - - - 9																				

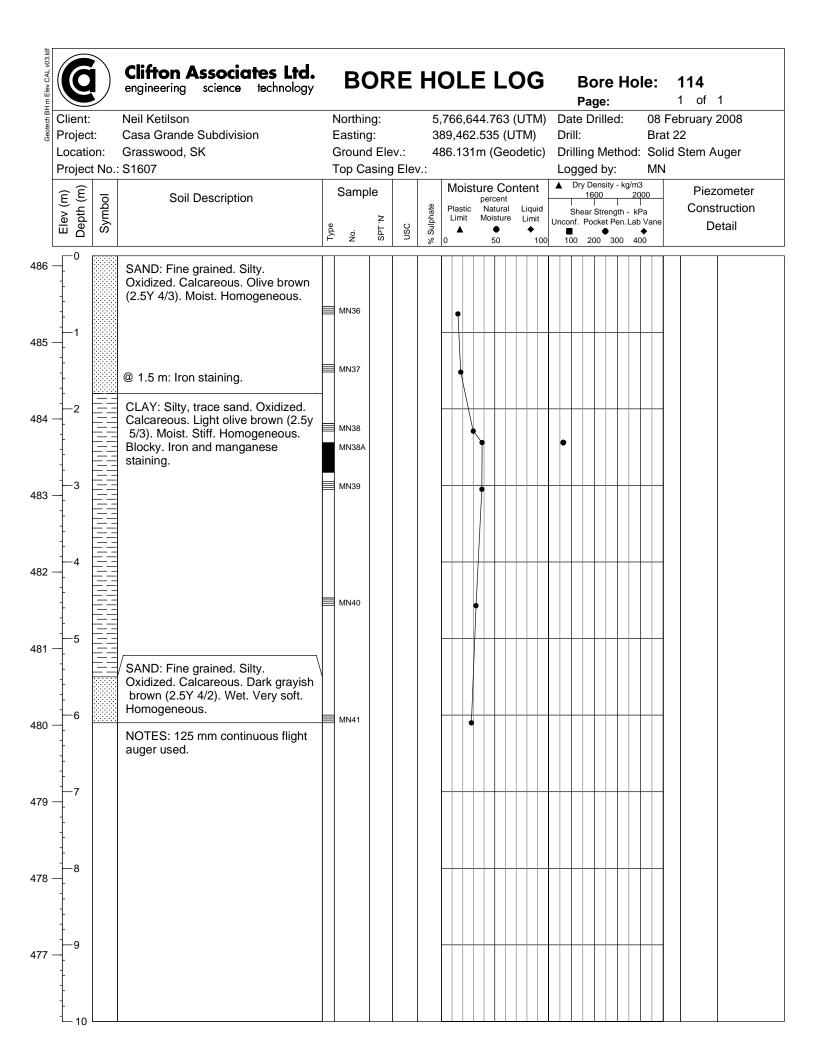
Geotech BH m Elev CAL v03.ld	6	engineering science technolog lient: Neil Ketilson	Clifton Associates Ltd. engineering science technology		B	OR	RE	H	01	LE	L	OG			3or Page		ole:		106 of 1	
Geotech Bł		t: on: t No.	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	E	Northir Easting Ground Fop Ca	g: d Ele		3 4	89,0 89.1)53.9 15 r	995 (m (G	9 (UTM) UTM) eodetic	ם ם (: ב	Date Drill: Drilli Logg	Dril ng M jed k	led: lethc by:	Br od: Sc KE	at 22 olid S	iuary 20 2 Stem Au	
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp g	ole N_IAS	nsc	% Sulphate	Pla: Lin 0	F stic nit M	re Co percent Natura Moistur 50	al Liquid	Un	She Inconf.	1600 ear Str Pocke	ength - ength - t Pen.l	2000 kPa Lab Vane	•	Piezo Constr Det	uction
489			SAND: Fine grained. Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.		KB47				•									_		
487 ·	- - - - - - - -		CLAY: Silty, sandy. Oxidized.		KB48 KB49					•								-		
486			Calcareous. Light olive brown (2.5Y 5/4). Moist. Hard. Laminated.		KB50					•								_		
485 -	- - - - - - - - - - - - - - - - - - -				KB51					•								_		
484	- - - - - - - - - - - - - - - - - - -		@ 4.6m: Trace sand. Iron and Manganese staining. Some calcium carbonate concretions.															_		
483			NOTES: 125 mm continuous flight		KB52 KB53									•				-		
482			auger used.																	
481 ·	- - - - - - - - - - - - - - - - - - -																	-		
480	- - - - - - - - - - - - - - - - - - -																	-		

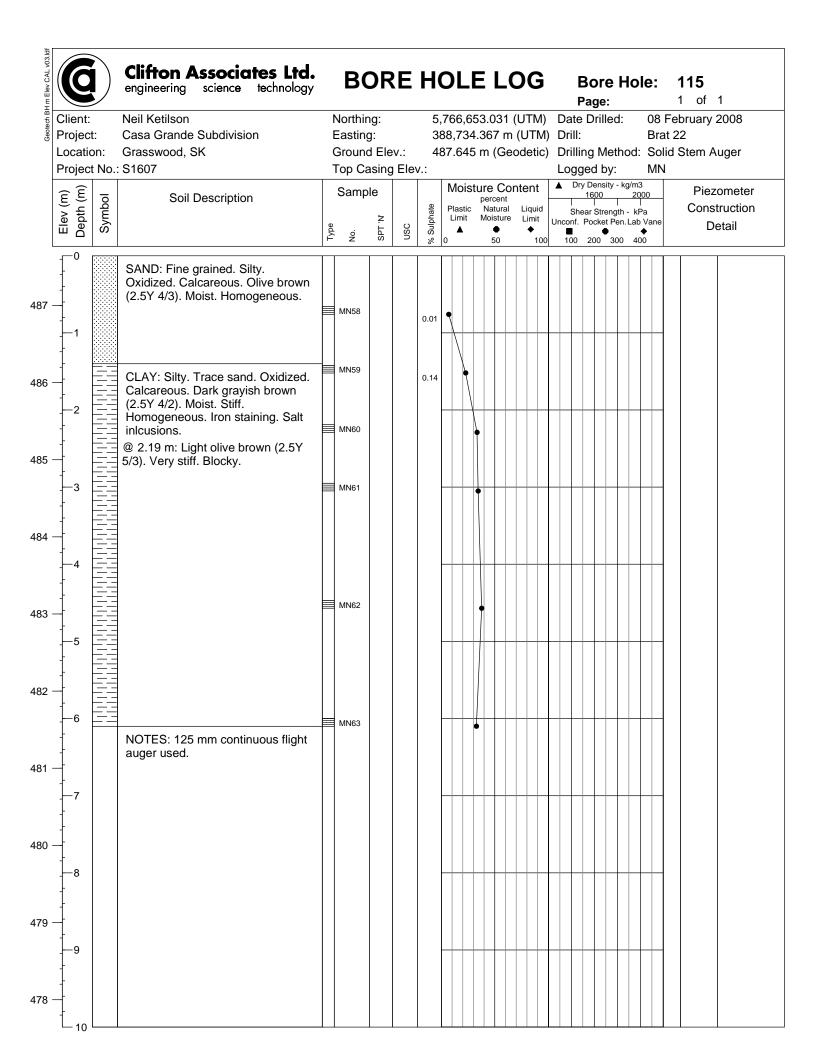
Geotech BH m Elev CAL v03.ld	0		Clifton Associates Ltd. engineering science technology		B	DR	RE	H	O	LE	Ξ	LC	C			Bo Pag		Hc	ole:		107 1 of	1
L	lient: rojec ocatio rojec	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607		Northir Easting Ground Top Ca	g: d Ele		3 4	39,0	086	.44	6 (U	(UTM) TM) odetic	, ;)	Date Drill: Drilli Loge	: ing l	Met	hod	В	at 2	nuary 2 2 Stem A	
	Depth (m)	Symbol	Soil Description	Type	Samp		USC	% Sulphate	Pla Lii		pero Na Moi		Liquid Limit • 10	Ur	nconf.	<u>160</u> ear S) treng tet Pe	th - k en.La	0000 kPa bVan	e	Const	ometer truction etail
	—0 		SAND: Fine grained. Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/3). Moist. Homogeneous. @ 1.5m: Wet.		KB54 KB55 KB56				•											_		
	- - 				KB57					•										_		
	4 		CLAY: Silty, sandy. Oxidized. Calcareous. Dark grayish brown (2.5Y 4/2). Moist. Soft. Laminated. Manganese staining.		KB58						,									_		
	- 6 -		CLAY: Some silt. Oxidized. Calcareous. Very dark grayish brown (2.5Y 3/2). Moist. Stiff. Laminated. Iron staining. NOTES: 125 mm continuous flight		KB59						•									-		
	- 7 - -		auger used. Sloughing @ 2.1 m.																			
- - - - -	8 9																			-		
-	- - 																					

Geotech BH m Elev CAL v03.ld	C		Clifton Associates Ltd. engineering science technology		BC	DF	RE	HOLE LOG Bore Hole: 108 Page: 1 of 2
		on: on: ot No.	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	l		g: d Ele asing		5,765,324.170 (UTM) Date Drilled: 17 January 2007 389,461.073 (UTM) Drill: Brat 22 486.440 m (Geodetic) Drilling Method: Solid Stem Auger ev.: 487.390 m Logged by: KB
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	ole N. LAS	USC	Big Moisture Content percent Dry Density - kg/m3 1600 Piezometer Plastic Natural Limit Liquid Moisture Liquid Limit Shear Strength - kPa Unconf. Pocket Pen. Lab Vane Construction % 0 50 100 100 2000 Detail
486 - 485 -			SAND: Fine grained. Silty, some clay. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Compact. Homogeneous.		KB60 KB61 KB62	11	SM	So mm sch 40 PVC pipe Cuttings Bentonite
484 - 483 -	- - - - - - - - - - - - - - - - - - -		CLAY: Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Soft. Iron staining. Laminated. Lensed with sand. SAND: Fine grained. Silty, some clay. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Compact. Manganese staining.		KB63 KB64 KB64B KB65 KB66	9	SM	Frac Sand
482 -	4 		Homogeneous.		KB67			▲ 482.400 m (25 Feb 08)
480 -	- - - - - - - - - - - - - - - - - - -		CLAY: Trace silt. Oxidized. Calcareous. Very dark grayish brown (2.5Y 3/2). Moist. Firm. Laminated.		KB68 KB69		сн	
479 -	8		SAND: Fine grained. Silty. Oxidized. Calcareous. Dark grayish brown (2.5Y4/2). Wet. Homogeneous.		KB70			50 mm sch 40 PVC slotted
478 - 477 -	-7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -				KB71			

Geotech BH m Elev CAL v03.ld		0		Clifton Associates Ltd. engineering science technology		B	DR	E	H	0	LI	Ε	LC	00	3			ore		lol	e:		108 2 of	2
Geotech BH	Clie Pro	ject atic	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK	 (Northin Easting Groun	g: d Ele		38 48	39,4 36.4	461 440	.07 m	3 (U	(UTN JTM) odet		Dr Dr	te E II: Iliną	Drille g Me	ed: etho	od:	Bra So	Jar at 22 lid S	nuary 2	007
		Depth (m)	Symbol	Soil Description	1	Top Ca Samp	-	SU	Sulphate	M Pla Li		pero Na Moi	Cont tural sture	nten Liqu Limi	id it	Unco	Sheai hf. Po	Densit 600 Stre Docket	ty - kg I ngth Pen.	g/m3 200 - kPa Lab \	a /ane		Const	ometer ruction etail
476 475 474 473		 10 11 12 13		SAND: Fine grained. Silty. Oxidized. Calcareous. Dark grayish brown (2.5Y4/2). Wet. Homogeneous. NOTES: 125 mm continuous flight auger used. Water @ 6.9 m. Seepage @ 4.9 m.		KB72					•													
472		15																						
470		17																						
469		18																						
467		19 20																						

Geotech BH m Elev CAL v03.ld	6		Clifton Associates Ltd. engineering science technology		B	OR	RE	H	0	L	Ε	LC	DG			Bo Pag		Ho	ole:		109 1 of	1
L	Client: Projec Locatio Projec	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	 (Northii Eastin Groun Top Ca	g: d Ele		3 4	B9,	458	8.87	0 (U	(UTM) TM) odetic	ם ם (Drill Drill		Met	hod	Br	at 2 olid 3	nuary 2 2 Stem A	
·	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	ole N. LAS	usc	% Sulphate	Pla Li	astic imit	per Na Moi	Col cent itural sture 50	Liquid Limit	Un	 Sl nconf	ry Der <u>160</u> hear S Pocl 200	0 treng ket Pe	2 th - k en.La	000 :Pa b Vane	e	Const	ometer truction etail
36 — 35 —			SAND: Fine grained. Silty. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Homogeneous.		KB74 KB75				•											_		
4 — 3 —	- - - - - - - - - - - - - - - - - - -		CLAY: Silty, sandy. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Soft. Homogeneous. Iron and Manganese staining.		KB76 KB77 KB78				•											_		
2 —	4 5 5 5 5		 @ 4.3 m: Wet. SAND: Fine grained. Silty. Oxidized. Calcareous. Dark grayish brown (2.5Y 4/2). Moist. Iron staining. 		KB79 KB80					•				•						_		
1 —	6 6 6 6 		NOTES: 125 mm continuous flight auger used. Sloughing @ 4.3 m.		KB81					-												
9 —	7 8 8 																					
8 — 7 —	- - - - - - - - - - - - - - - - - - -																					


BH m Elev CAL v03.ldf	6		Clifton Associates Ltd. engineering science technology		B	OR	E	H	OL	E	L	CG		Bo Pag		Но	le:	110 1 c	
Geotech BH		t: on: t No.	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	E (Northii Eastin Groun Top Ca	g: d Ele		3 4	89,39 87.04	97.07 I3 m	72 (U (Ge	odetic	Dr) Dr Lc	ate D ill: illing oggeo	Met d by:	thod :	Bra : So KB	at 22 Iid Ster	ry 2008 n Auger
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	spt 'N' Tas	USC	% Sulphate	Moi Plasti Limit 0	pe c N	e Col arcent atural oisture 50	ntent Liquid Limit (0	Unco	l Shear nf. Po	00 Streng cket P	gth - k	000 I Pa o Vane	Co	iezometer onstruction Detail
487	0 1 1		CLAY: Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.		KB82				•										
			SAND: Silty. Oxidized. Calcareous. Dark olive brown (2.5Y 3/3). Moist. Homogeneous.		KB83														
485	2		CLAY: With silt. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Firm. Laminated. Iron staining.		KB84					,									
484	3		SAND: Fine grained. Silty, some		KB85				f										
483	4 4		clay. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Homogeneous.		KB86				•										
482																			
481		<u></u>	NOTES: 125 mm continuous flight auger used. Sloughing @ 4.3 m.		KB87														
479	- - - - - - 8																		
478	9 10																		


Geotech BH m Elev CAL v03.ld	6		Clifton Associates Ltd. engineering science technology		B	OF	RE	Η	OL	ΕL	.OG		Bor Page	e Ho	ole:	111 1 of	2
	Client: Project Location Project	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	E	Northi Eastin Groun Top C	g: d Ele		3 4	889,47	5.333 1 m (C	5 (UTM (UTM) Geodetic	Dri Dri Dri	lling M gged b	lethod by:	Bra Sol MN	Februar it 22 id Stem	-
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp g	ole N. Lds	USC	% Sulphate		perce	ral Liquid ure Limit	Uncor	1600 Shear Str nf. Pocke	sity - kg/m 2 ength - k et Pen. La 300 4	000 I :Pa b Vane	Cor	ezometer hstruction Detail
487 -			SAND: Some silt, some clay. Calcareous. Oxidized. Olive brown (2.5Y 4/3). Moist. Homogeneous.		MN25 MN26				•								50 mm sch 40 PVC pipe Bentonite
485 -					MN27				•							▼	485.264 m (25 Feb 08) Frac sand
484 -			CLAY: Some silt, some sand. Calcareous. Oxidized. Olive gray (5Y 4/2). Moist. Firm. Iron and manganese stains. Homogeneous.		MN28												
483 -			SAND: And silt. Calcareous. Oxidized. Olive gray (5Y 4/2). Moist. Manganese stains. Homogeneous.		MN29												
482 -																	50 mm sch 40 PVC slotted
481 -			CLAY: Some silt. Unoxidized. Calcareous. Dark gray (2.5Y 4/1). Moist. Stiff. Homogeneous. Blocky.		MN30					•							
480 -					MN31					•							
479 -																	
478 -	-9				MN32					•							

BH m Elev CAL v03.ldf		Clifton Associates Ltd. engineering science technology	B	SOF	RE	H	01	_E	LC	G		Bo i Page		lole:		111 2 of	2
Geotech BH r	Client: Project: Location: Project No.	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	East Grou	hing: ing: ınd Ele Casine		38 48	89,4 87.2 88.0	75.3 81 m 94 m	33 (U [.] ı (Gec ı	odetic)	Dri Dri Log	te Dri II: Iling N gged	lled: Metho by:	Bi od: So M	3 Fe rat 2 olid 3	bruary 2	2008
	Elev (m) Depth (m) Symbol	Soil Description	Sar ^{od,} N	nple <u>v</u> Lds	nsc	% Sulphate	Plas Lim	pe stic N nit Me	e Con ercent latural oisture 50	Liquid Limit + 100	Uncor) rength et Pen.	2000 - kPa Lab Van	e	Const	ometer ruction etail
477		CLAY: Some silt. Unoxidized. Calcareous. Dark gray (2.5Y 4/1). Moist. Stiff. Homogeneous. Blocky.	■ мN3	3				•									
476																	
475			MN3	4				•									
474	1 1	NOTES: 125 mm continuous flight	МN3	5				•									
473	1	auger used. Sloughing @ 4.3 m. Seepage @ 5.8 m.															
472	1																
471	1																
470																	
469																	
468	19 																

Clier Proje Loca Proje	ect atio	n:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607		Northii Eastin Groun Top Ca	g: d Ele		38 48	39,0 37.1)67. 154	.950 m (0 (U (Geo	(UTM) TM) odetic	D ;) D L	ate rill: rilli ogg	ng I jed	lled Meth by:	nod:	Bra So Mi	at 2 olid 3	bruary 2 Stem A	
Elev (m)		Symbol	Soil Description	Tvpe	Samp	ole	USC	% Sulphate	Pla: Lin 0	stic nit	ure perc Nat Mois	ent tural sture	Liquid Limit	Unc	She conf.	1600 ear St Pock	isity -) trength et Per 300	20 n - kF n.Lab	00 Pa Vane	•	Cons	cometer struction etail
			SAND: Fine grained. Silty. Oxidized. Calcareous. Olive brown (2.5Y 4/4). Moist. Homogeneous.		MN13																	
			@ 1.5 m: And silt. Light olive brown		MN14					•												
1 1-2 1			(2.5Y 5/4). Salt inclusions. CLAY: Silty. Trace sand. Oxidized. Calcareous. Light olive brown		MN15															-		
- 3 3	-		(2.5Y 5/4). Homogeneous. Iron staining.		MN16															-		
- - 4	-		@ 4.3 m: Wet.																	-		
- - 5	-			_	MN17					•												
- - - 6	-		CLAY: Some silt. Unoxidized. Calcareous. Dark gray (2.5Y 4/1). Moist. Stiff. Homogeneous. Blocky.		MN18																	
			NOTES: 125 mm continuous flight auger used. Seepage @ 4.3 m.								,											
1-7 1 1																						
- 8 																				-		
- 9 								·														

Geotech BH m Elev CAL v03.ld	0		Clifton Associates Ltd. engineering science technology		B	DR	Ε	H	Ol	_E	Ľ	.00	3		Bo Page		Ho	le:	113 1 of	1
Geotech Br	-	t: on: t No.:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607	 (Northir Easting Ground Top Ca	g: d Ele		38 48	89,0 87.6	78.5 16 r	575 (m (G		ic)	Dat Dril Dril Log	e Dri I: ling I ged	lled Meth by:	nod:	Bra Sol MN		uger
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	le N. LAS	usc	% Sulphate	Plas Lim	r itic iit N	Natura Moistur 50	al Liqui re Limi ♦	id	l S Uncon	Dry Der 160(hear St f. Pock 0 200	rengt et Pe	20 h - kF n.Lab	00 Pa Vane ♦	Cons	ometer truction etail
487 - 486 -	0 		CLAY: Silty, sandy. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Dry. Homogeneous. SAND: Fine grained. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Dry. Homogeneous.		MN19 MN20				•											
485 - 484 -	- 2 		 @ 2.3 m: Moist. CLAY: And silt. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Very soft. Homogeneous. Iron and manganese staining. Salt inclusions. 		MN21 MN22					•										
483 -	- 4 - - - 5 -		@ 3.7 m: Trace silt.		MN23						•									
482 -	- - - - - - - - -		CLAY: Trace silt. Unoxidized. Calcareous. Dark gray (2.5Y 4/1). Moist. Stiff. Homogeneous. Iron and manganese staining. NOTES: 125 mm continuous flight auger used.		MN24					•	•									
481 -																				
479 -	- 																			
478 ·	- - - - - - 10																			

Geotech BH m Elev CAL v03.ld	0		Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	0	LE	EL	.00	3			ore ge:	e H	ole:		116 1 of	1
	Client: Projec Locatio	t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK	E	lorthir Easting Ground	g: d Ele		3 4	89,	291.	604	8 (UTN (UTM) Geodet		Dri Dri	ite D ill: illing	orille Me	etho	Bi d: Si	rat 2 olid	bruary : 2 Stem A	
		t No.:	S1607	T	op Ca	asing	Elev	/.:							gge	-		Μ	N		
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp g	sPT 'N' SPT 'N'	USC	% Sulphate	Pla Li	astic	percen Natura Moistu	al Liqu re Limi ♦	ıid it	Unco	16 Shear nf. Po	S00 Strer	l ngth - Pen.L	2000 I kPa ab Van	e	Cons	ometer ruction etail
L	— 0				z	0		%	0		50	,	100	10	00 2	00 :	300	400		1	
			SAND: Fine grained. Silty. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Homogeneous. Iron staining. Salt inclusions.		MN1					•											
186 -	1 		CLAY: Silty. Oxidized. Calcareous. Dark olive brown (2.5Y 3/3). Moist. Stiff. Homogeneous. Iron staining. Salt inclusions.		MN2					•											
85 -	2				MN3																
84 -	- - 				MN4																
183 -	4 				MN5																
82 -	- 5 -		@ 5.2 m: Interbedded clay and silt.																		
81 -	- - 6				MN6																
			NOTES: 125 mm continuous flight auger used. Seepage @ 5.8 m.																		
80 -	- - 7 - -																		-		
79 -	- - 																		-		
	-																				
178 -	9 																				
- 77	- - - - 10																				

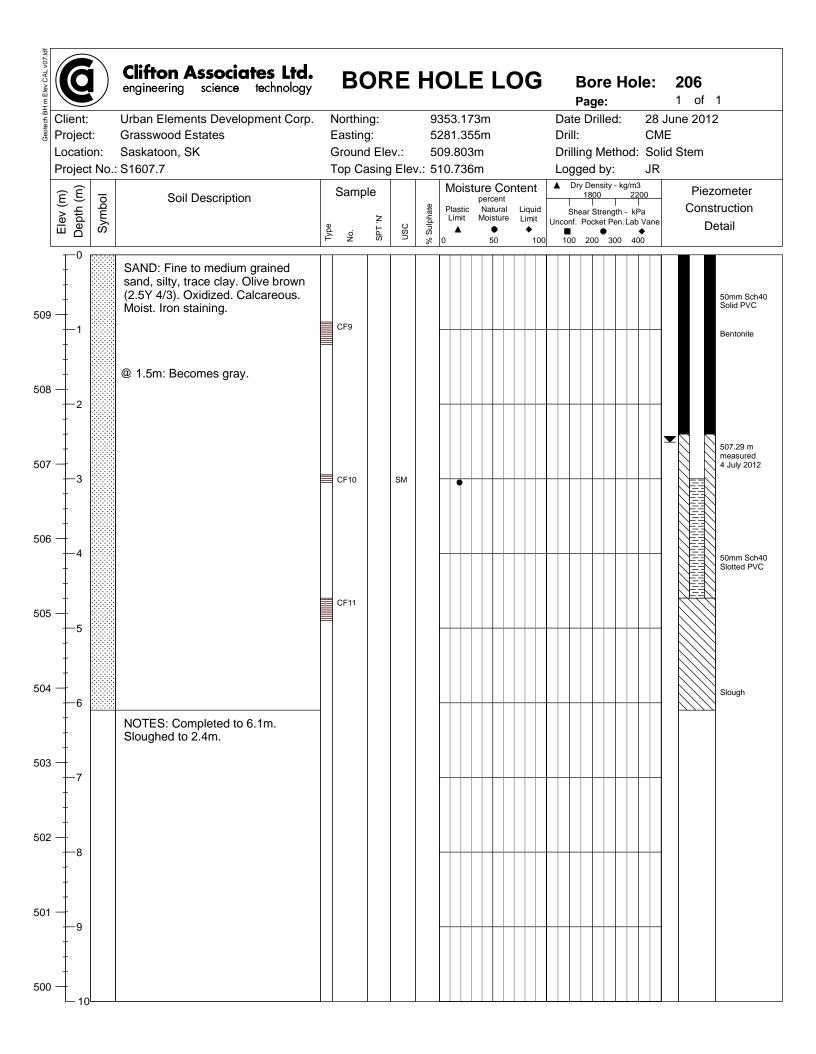
Client		Clifton Associates Ltd. engineering science technology		B	OR	E	H	Ol	.E	L	OG			ore	Ho	ole:		17	I
Locati Projec	ct: ion: ct No.	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	E	Northii Eastin Groun Fop Ca	g: d Ele		3 4	88,7 86.0	92.8 94 n	867 (L n (Ge	odetic	Di Di La	ogge	g Me d by	ethoc /:	Br I: Sc Mi	at 22 Iid S	tem Au	
Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp g	ole N. Tas	nsc	% Sulphate	Plas Lim 0	p itic l it N	re Co ercent Natural Moisture 50	ntent Liquid Limit + 100	Unco	1 Shea onf. P	600 r Strer ocket	l Igth - I	2 <u>000</u> ↓ kPa Ib Vane		Const	ometer ruction tail
		SAND: 900 mm organic material. Silty, trace clay. Oxidized. Calcareous. Olive brown (2.5Y 4/4). Moist. Homogeneous.		MN7 MN8				•									-		
		CLAY: Some silt. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Homogeneous. Iron staining. Salt inclusions. Blocky.		MN9 MN10					•								-		
- - - - - - - - - - - - - - - - - - -				MN11													-		
		 4.6 m: Very dark grayish brown (2.5Y 3/2). 5.5 m: Sand lense. Wet. 																	
- 6 6		NOTES: 125 mm continuous flight auger used.		MN12															
- - - - - - - - - - - - - - - - - - -																			
9 9 9 																			

Clien			Clifton Associates Ltd. engineering science technology		B	DR	RE	H	0	LE	EL	.00)		Bo Pag		Н	ole	:	118 1 of	1
Loca Proje	ect: atio ect	n:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607		Northir Eastin Groun Top Ca	g: d Ele		3 4	88,8 89.3	351.4 390 i	487 m (G	3 (UTM (UTM) Geodeti	ic)	Dri Dri Log	ll: lling ggeo	d by	tho :	E Id: S N	Brat	ebruary 22 Stem A	
Elev (m) Denth (m)		Symbol	Soil Description	Type	Samp		nsc	% Sulphate	Pla: Lir	stic	Percer Natur Moistu 50	al Liqui ire Limit	id	Uncon	16 Shear f. Po	00 Stren	 gth - Pen.L	2000 kPa .ab Va	ine	Cons	ometer truction etail
			SAND: Fine grained. Some silt. Oxidized. Calcareous. Light olive brown (2.5Y 5/4). Moist. Homogeneous.		MN52				•												
+-1 + + + +			CLAY: Sitly, trace sand. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Moist. Very stiff. Homogeneous.		MN53																
2 			@ 2.2 m: Silt partings. Iron staining.		MN54																
	- - - - - - - - - - - - - - - - - - -		SAND: Fine grained. Silty. Oxidized. Calcareous. Dark grayish brown (2.5Y 4/2). Moist. Laminated.		MN55 MN55A				Ń												
- - - - - - 5			CLAY: And silt. Oxidized. Calcareous. Dark grayish brown (2.5Y 4/2). Moist. Very soft. Homogeneous. Iron staining. Organic inclusions.		MN56																
	· · · · · · ·		SAND: Silty. Oxidized. Calcareous. Olive brown (2.5Y 4/3). Wet. Homogeneous.		MN56																
+ -+ + + +-7			NOTES: 125 mm continuous flight auger used. Seepage @ 5.8 m.																		

Geotech BH m Elev CAL v03.ld	C		Clifton Associates Ltd. engineering science technology		B	OF	RE	H	0	LE	EI	LO	G			or age		lol	e:		19 of	2
		t: on:	Neil Ketilson Casa Grande Subdivision Grasswood, SK : S1607	l (Northi Eastin Groun Top C	g: d Ele		3 4	89,: 88.:	262. 243	166 m (27 (U 6 (UTN Geod	/I) etic)	D D Lo	rill: rillin ogge	ed b	leth by:	od:	Bra Sol MN	at 22 Iid S	oruary 2 2 Stem A	
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp ²		USC	% Sulphate	Pla Li	astic	perce Natu Moist	ural Li ture L	ent quid imit ♦ 100	Unc	Shea	ar Stre Pocke	ength t Pen	kg/m3 200 1 - kP 1.Lab 40	<u>00</u> a Vane		Const	ometer ruction etail
8 -	0 0 		SAND: Fine grained. Silty. Oxidized. Calcareous. Light olive brown (2.5Y 5/6). Moist. Homogeneous.		MN42				•													
6 -	- - - - - - - -				MN44 MN44A																	
; -					MN45																	
			CLAY: Silty. Oxidized. Calcareous.		MN46					•												
_	- - - - - - - - - - - - - - - - - - -		 Olive brown (2.5Y 4/3). Moist. Homogeneous. CLAY: Silty. Unoxidized. Calcareous. Very dark gray (2.5Y 3/1). Moist. Homogeneous. 		MN47					•												
_	- - - - - - - - -		SAND: Fine grained. Silty, trace clay. Unoxidized. Calcareous. Very dark gray (2.5Y 3/1). Wet. Homogeneous.		MN48					•												
_	- 																					
. –	9 				MN49																	

Client: Project:		Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	0	LE		LO	G		Bc Pag		Но	le:		119 2 of	2
Location Project	n:	Neil Ketilson Casa Grande Subdivision Grasswood, SK S1607	E	Northir Easting Ground Fop Ca	g: d Ele		38 48	39,2 38.2	262. 243	166 m (M) etic)	Dri Dri Lo	te D II: Iling ggeo	rilleo Met d by:	hod	Bra So MN	at 22 Iid S	oruary 2 2 Stem A	
	Symbol	Soil Description	Type	Samp		usc	% Sulphate	Pla Lir	stic	perce Natu Mois 50	ural L ture L	ent iquid .imit ♦ 100	Uncoi	Shear	00 Streng cket P	<u>2</u> th - k en.Lat	000 Pa o Vane		Const	ometer ruction etail
		SAND: Fine grained. Silty, trace clay. Unoxidized. Calcareous. Very dark gray (2.5Y 3/1). Wet. Homogeneous. @ 10.7 m: Clayey. Black (2.5Y 2.5/1).		MN50					•											
		NOTES: 125 mm continuous flight auger used. Seepage @ 6.4 m.		MN51					•											
- - - - - - - - - - -																				
- - - - - - - - - - - - - - - - - - -																				

m Elev CAL v07.ldf			Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	ЭL	E	LC)G		Bo Pag		Hol	e:	201 1 of 1	
Geotech BH r	Clien Proje Locat Proje	ct: tion:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK : S1607.7	E	Northir Easting Ground Fop Ca	g: d Ele		56 51		39m 4m 5m	I		Dri Dri Log	te Dr II: Iling gged	rilled Meth by:	nod:	CME Solio JR	une 2012	
	Elev (m) Depth (m)		Soil Description	Type	Samp <u>'</u>	le N. Lds	nsc	% Sulphate	Plasti Limit	per Na Mo	e Cor rcent atural isture 50	Liquid Limit • 100	S Uncon	Dry De 180 Shear S of. Poc 0 200	00 Strengt ket Pe	220 h - kP n.Lab	<u>00</u> a Vane	Piezometer Construction Detail	
510 509			ORGANIC SOIL: 300mm of organic soil. SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist.		CF27		SM		•									50mm Sch Solid PVC Bentonite	140
508																		508.08m measured 4 July 2013	2
507 506																		50mm Sch Slotted PV	
505	5		CLAY: Clay, some silt. Very dark gray (2.5Y 3/1). Unoxidized. Calcareous. Manganese stains.	-															
504			NOTES: Completed to 6.1m. Sloughing at 2.4m.	-															
503 502																			
502																			
_ 0 1		0																	


BH m Elev CAL v07.ldf			Clifton Associates Ltd. engineering science technology		BC	OR	RE	H	0	LE	ΞL	OG			Bore	-	ole	-)2 of 2	
ch BH m	Client		Urban Elements Development Corp.	-	Northir	na.		1	ารว	1 5	15m		<i>י</i> ח		age : Drille			ı 28 June		
seotec	Proje		Grasswood Estates		Easting	-).57				rill:		eu.		CME	2012	
0	Locat		Saskatoon, SK		Ground	-	ev.:			436					na M	etho		Solid St	em	
			\$1607.7		Тор Са										ed b			JR		
	-			1		-	,		_		ure Co	ntent			Densi				Piezom	a 4a #
	Elev (m) Depth (m)	Symbol	Soil Description		Samp	le		Ð			percent				1800		2200		Construc	
	pth bth	, m				z		Iphat		istic mit	Natural Moisture	Eimit	Unco		ar Stre Pocket				Detai	
	шĞ	S		Type	No.	SPT 'N'	nsc	% Sulphate	0	A	• 50	♦ 100		00	200		♦ 400		Detai	1
l	0	2223																		
	ł	× × × ×	ORGANIC SOIL: 150mm of																	
511			organic soil.																50-	an Cab 10
	ł		SAND: Fine to medium grained																	nm Sch40 id PVC
	1		sand, trace silt, trace clay. Olive																	
] '		brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.																Ber	ntonite
510	-		Calcareous. Moist. non staining.		CF29		SM													
	ł				0.20		0													
	ŧ,																			
	-2																		500).28m
509																			me	asured uly 2012
000	ł																			uly 2012
	ł																		SIO	ugh
	-3		@ 3.0m: Becomes wet.							+								\exists		-
	f																			
508	1																			
]																			
	-4									+							_	\vdash		
	ł																			
507	-1																			
	[
	-5									+							_	\square		
	ł																			
506	-				CF30															
	ĺ		CLAY: Clay, some silt. Very dark		01 30															
	1-6		gray (2.5Y 3/1). Unoxidized. Calcareous. Manganese stains.															\square		
	ł		Calcareous. Manganese stains.																	
505	-																			
	ł																			
	7																	\square \bowtie		
] '																			
504			SAND: Fine to medium grained		CF31															
	ł		sand, trace silt, trace clay. Dark																	
	-8		gray (2.5Y 4/1). Unoxidized.															\square		
			Calcareous. Moist. Organic inclusions.																	
503	_																			
	ł																			
	ł																			
	9																	$\exists \beta$		
502	_[
JUZ	}																			
	ł																			
	<u> </u>	0		1	I	1	I	L												

Client: Project: Location: Project No.	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK : S1607.7		Northin Eastin Groun Top Ca	g: d Ele		5: 51	500 11.4 12.4		sm n n			D D La	ate rill: rillin ogge	d by	ed: ethoo /:	CN d: So JR	lid Stem	
Elev (m) Depth (m) Symbol	Soil Description	Type	Samp 2		nsc	% Sulphate	Pla Lir 0	l stic nit l	Natu Moist	ent ural ture	Liquid Limit	Unc	Shea Shea	1800 Ir Strei ocket	l ngth - ∣	2200 │ kPa ab Vane	Con	zometer struction Detail
	SAND: Fine to medium grained sand, trace silt, trace clay. Dark gray (2.5Y 4/1). Unoxidized. Calcareous. Moist. Organic inclusions.																	50mm Sch4
	CLAX: Clay, some silt. Very dark																	
	CLAY: Clay, some silt. Very dark gray (2.5Y 3/1). Unoxidized. Calcareous. Manganese stains.																	
 16	NOTES: Completed to 15.2m. Sloughed to 2.4m. Seepage at 3.0m.																	

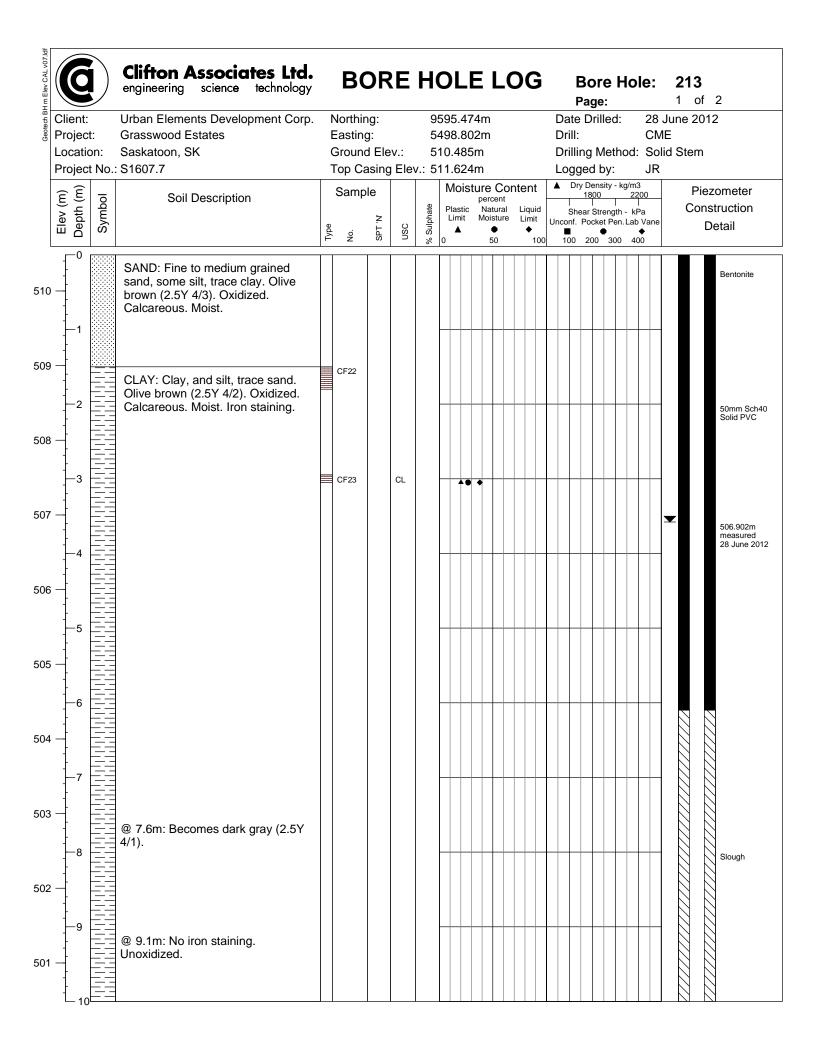
-	t: on:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK S1607.7	 (Northir Easting Ground Top Ca	g: d Ele		58 57	512 10.2 11.3		m า า		D D L	ate rill: rillin ogge	ed by	ed: etho /:	C d: H J	ME	ne 201: w Stem	
Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp		nsc	% Sulphate	Pla Lir	F stic	re C bercen Natura Moistur 50	l Liquid	Unc	Shea sonf. F	Densit 1800 ar Strei Pocket 200	 ngth - Pen.L	2200 kPa .ab Va	ne	Cons	ometer truction etail
	2222222 2222222 22222222	ORGANIC SOIL: 450mm of organic soil.																	
		CLAY: Clay, some silt, trace fine grained sand. Dark olive brown (2.5Y 3/3). Oxidized. Calcareous. Moist.		CF32		SC			••										50mm Sch4 Solid PVC Bentonite
2		SAND: Fine to medium grained sand, trace silt, clayey. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist.																	508.13m measured 4 July 2012
		@ Becomes some silt, trace clay.		CF33		SM													Slough 50mm Sch4 Slotted PVC
- - - - -		@ 4.6m: Becomes wet.																	
		NOTES: Completed to 6.1m. Sloughed to 2.4m. Seepage at 4.6m.																	• •
- 7																			
								+									_		

Geotech BH m Elev CAL v07.ldf			Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	0	LE	L	OG			ore ge:	Но	le:	204 1 of	1
Geotech BH	Clier Proje Loca Proje	ct: tion:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK .: S1607.7	 (Northir Easting Ground Top Ca	g: d Ele		58 50	597 09. 10.		m I		Dr Dr Lc	ate D ill: illing ogge	orille Me d by:	thod:	CN So JR	June 201 1E lid Stem	
	Elev (m) Denth (m)	Symbol	Soil Description	Type	Samp	le N. Lds	nsc	% Sulphate	Pla Li	p astic	re Co ercent Natural loisture 50		Unco	18 Shear onf. Po	300 Streno cket P	 gth - kl	2 <u>00</u> Pa o Vane	Cons	zometer struction vetail
509			ORGANIC SOIL: 300mm of organic soil. SAND: Fine to medium grained sand, silty, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF34		SM		•										50mm Sch40 Solid PVC Bentonite
507			@ 3m: Becomes wet.																507.40m measured 4 July 2012 Slough 50mm Sch40 Slotted PVC
506 505																			
504			 @ 6.1m: Becomes dark gray (2.5Y 4/1). Unoxidized. Organic inclusions. 																
503 502																			
501	3 	+++++++++++++++++++++++++++++++++++++++	SILT: Silt, clayey, sandy. Dark gray (2.5Y 4/1). Unoxidized. Calcareous. Wet.		CF35		CL/ ML												
500			NOTES: Completed to 9.1m. Sloughed to 2.4m. Seepage at 3.0m.																

BH m Elev CAL v07.ld			Clifton Associates Ltd. engineering science technology		BC	DR	E	H	D	LE	ΞL	_0	G			ore		ole:		205 1 of	1
Geotech BH	Clien Proje Loca Proje	ect: tion:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK : S1607.7	E	Northin Easting Ground Fop Ca	j: I Ele		52 51	285 10.0	0.895 5.498 625r 567r	3m n			D D	ate rill: rillin	Drille	ed: etho	С	3 Jur ME ollov	v Stem	
	Elev (m) Denth (m)	Symbol	Soil Description	Type	Samp g	e 'N' Tqs	USC	% Sulphate		astic	Jre (perce Natu Moist 50	ural I ture	ent Liquid Limit 100	Unc	Shea onf. P	Densit 1800 In Strei Pocket 200	 ngth - Pen.L	2200 kPa .ab Var	e	Const	ometer ruction etail
510 509 508 507 506 505 504 503 502 502			ORGANIC SOIL: 750mm of organic soil. SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining. @ 1.8m: Becomes wet. Interbedded gray clay. CLAY: Clay, some silt. Very dark gray (2.5Y 3/1). Oxidized. Calcareous. Moist. Iron staining. SAND: Fine to medium grained sand, silty, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Wet. Iron staining. SAND: Fine to medium grained sand, silty, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Wet. Iron staining. NOTES: Completed to 7.6m. Seepage at 1.8m. Piezometer installed inside hollow stem.		CF21		SM														50mm Sch40 Solid PVC Bentonite Filter Sand 506.53 m measured 4 July 2012 50mm Sch40 Slotted PVC
	Ľ																				

Elev CAL v07.ld		0		Clifton Associates Ltd. engineering science technology		BC)R	ε	H	01	LE	ΞI	LC	G			ore		ole	-	207	
Geotech BH m Elev		ent: oject	t:	Urban Elements Development Corp. Grasswood Estates	I	Northin Easting	j:				.629					Pa ate [rill:	i ge: Drille				1 of ne 2012	
		catio oject		Saskatoon, SK S1607.7		Ground Top Ca				09.9		n			Lo	ogge	d by	y:		Solid JR	Stem	
	Elev (m)	Depth (m)	Symbol	Soil Description	Type	Sampl	e 'N' Tqs	usc	% Sulphate	Pla: Lin 0	stic nit	perce Nate Mois	ural sture	Eiquid Liquid Limit 100	Unce	Dry [1 Shea onf. Po 00 2	800 I Strei ocket	 ngth - Pen.I	2200 kPa	ane	Cons	cometer truction etail
	-	-0	***	ORGANIC SOIL: 200mm of organic soil.																		
508		-1		SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF6																50mm Sch40 Solid PVC Bentonite
507	+	-2		CLAY: Clay, some silt. Olive brown (2.5Y 4/2). Oxidized. Calcareous. Iron staining.																_		507.51 m measured 4 July 2012
506		-3		SAND: Fine to medium grained		CF7																Filter Sand
505		-4		sand, silty, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Wet. Iron staining.																		50mm Sch40
	•			@ 4.6m: Becomes gray.		CF8		SM			•											Slotted PVC
504		-5		CLAY: Clay, some silt. Dark gray (2.5Y 4/1). Oxidized. Calcareous. Moist. Iron staining.																		
503		-6		NOTES: Completed to 6.1m. Sloughed to 4.0m. Seepage at 1.7m.																		Slough
502	-	-7																				
501		-8																				
500		-9																				
499		- 10																				

	t: on:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK : S1607.7	E (Northii Eastin Groun Top Ca	g: d Ele asinę		52 51	202. 1.3 2.3		m า า			Dri Dri Log	ll: lling ggec	rilled Meth I by:	nod	CN So JR	Jun /IE lid S		2
Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp z	ole	nsc	% Sulphate	Plas Lim	r stic it N	re C Dercen Natura Moistu 50	nt al l	ent Liquid Limit 100	S Uncor	180 Shear S nf. Poo	Strengt ket Pe	22 h - kl n. Lat	2 <u>00</u> Pa o Vane		Cons	cometer truction etail
	¥¥¥;	organic soil.																		50mm Sch4
- - - - - -		SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF25																Solid PVC Bentonite
1-2 		@ 2.4m: Some clay.																*		Filter Sand 508.55m measured
				CF26																4 July 2012
																				50mm Sch4 Slotted PV0
6		CLAY: Clay, some silt. Dark gray (2.5Y 4/1). Oxidized. Calcareous. Moist. Iron staining.	-																	
		NOTES: Completed to 6.1m. No sloughing. No seepage.																		
1—9 																				


BH m Elev CAL v07.ld			Clifton Associates Ltd. engineering science technology		BC	DR	RE	Н	D	LE	EL	.OG			ore	Но	ole:	209 1 of	1
Geotech BH	Client Project	ct:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK	l	Northin Easting Ground	g:		5′	113	.323 .209 626r)m		Dr	ate I rill:	Drille		СМ	June 2012	
			: S1607.7		Top Ca										ed by		JR		
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp	le N. Lds	nsc	% Sulphate	Pla Lir	stic	percer Natur Moistu 50	ral Liquid ure Limit	Unco	Shea Shea	Density 800 Ir Stren ocket F 200 3	gth - I Pen.La	2200 kPa ab Vane ♦	Cons	ometer truction etail
		**************************************	ORGANIC SOIL: 450mm of organic soil.																50mm Sch40
512			SAND: Fine to medium grained sand, some silty, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.																Solid PVC Bentonite
511	 2 2				CF20		SM			•									Filter Sand
510	3		@ 3.0m: Clayey.																50mm Sch40 Slotted PVC
509				_															empty
500	-4 4		CLAY: Clay, some silt, trace sand. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.																measured 4 July 2012
508	5																		
507	 6																		Slough
506																			
505			NOTES: Completed to 7.6m.	_															
504	8 		Sloughed to 3.7m.																
	- 9 - -																		
503																			

m Elev CAL v07.ld	6		Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	D	LE	Ľ	00	G		Bo Pag		Но	le:	210 1 of	1
Geotech BH m Elev CA	Client: Projec Locatio Projec	t: on:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK S1607.7	E	Northir Easting Ground Fop Ca	g: d Ele		5 ⁷ 5 ⁷	102 11.4	5.39 .667 124n 562n	m า			Dril Dril	te Di I:	rillec Met	hod:	CM	June 201 IE id Stem	2
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp		nsc	% Sulphate	Mo	Distu F stic nit		al Liq	uid nit	▲ I S Uncon	Dry De 180 	nsity -)0 Streng ket Pe	• kg/m: 22 th - kF	200 Pa Vane ♦	Con	zometer struction Detail
511 510 509 508	- 		ORGANIC SOIL: 300mm of organic soil. SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF36		SM		•											50mm Sch40 Solid PVC Bentonite Filter Sand 50mm Sch40 Slotted PVC
507 506	- - 5 -		@ 4.6m: Becomes wet.																	507.25 measured 4 July 2012 Slough
505	- - 7 -		NOTES: Completed to 6.1m. Sloughed to 4.3m. Seepage at 4.6m.																	
504 503																				
502	9 																			

Geotech BH m Elev CAL v07.ldf		0		Clifton Associates Ltd. engineering science technology		BC	DR	E	Н	D	LE	ΞL	_C	G			sor age		lole	:	211 1 of	1
Geotech BH r	Pro Loc Pro	catio oject	t: on:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK S1607.7	 (Northir Easting Ground Top Ca	g: d Ele		57 51	27 1.0 2.1	7.46 078 157	m m			D D Lo	ate rill: rillir ogg	Drill ng M ed b	ed: letho y:) od: ۹	CME	une 201	
	Elev (m)		Symbol	Soil Description	Type	Samp	e 'N' Tds	USC	% Sulphate		oist astic mit	vre C perce Natu Moistu 50	nt ral ure	ent Liquid Limit 100	Unc	She onf. I	Pocke	ength t Pen.	g/m3 2200 - kPa .Lab Va ∳ 400		Cons	cometer truction etail
510 509 508 507 506 506 504				ORGANIC SOIL: 150mm of organic soil. SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining. @ 1.2m: Becomes wet. 0 1.2m: Becomes wet.	1700	ĊF28	SPT -	SM	% Sul					•			•)	+			etail Bentonite 509.87m measured 28 June 2012 50mm Sch40 Solid PVC Slough 50mm Sch40 Slotted PVC
502		- 10																				

BH m Elev CAL v07.ldf			Clifton Associates Ltd. engineering science technology		BC	DR	RE	H	D	LE	ΞI	LC)G			ore	H	ole		2 of 2	
Geotech BH		ect: tion: ect No.	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK : S1607.7	 (Northin Easting Ground Top Ca	g: d Ele		58 57	309 10. ⁻ 11.(2m n n			D D La	ate rill: rillin ogge	Drille g Me ed by	tho :	C d: S J	8 June ME Solid Ste R	2012	
	Elev (m)	Symbol	Soil Description	Type	Samp	le N. LdS	nsc	% Sulphate		stic	Jre perc Nat Mois	ent ural sture	Liquid Limit	Unce	Shea Shea	Density 800 Ir Stren ocket F 200	 gth - Pen. L	2200 kPa ab Va	c	Piezomete onstructio Detail	
510) 	ORGANIC SOIL: 600mm of organic soil.																	Bentor	ite
509			SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF1																
508			CLAY: Clay, some silt. Olive brown (2.5Y 4/2). Oxidized. Calcareous. Moist.	_																50mm Solid P 507.77 measu 4 July :	VC m red
507		4	SAND: Fine to medium grained sand, some silt, trace clay. Olive brown (2.5Y 4/3). Oxidized. Calcareous. Moist. Iron staining.		CF2		SM														
506			CLAY: Clay, some silt. Dark gray		012		Givi														
505			(2.5Y 4/1). Oxidized. Calcareous. Moist. Iron staining.																		
504																					
503					CF3																
502																				Slough	
501																					

Geotech BH m Elev CAL v07.ldf	C		Clifton Associates Ltd. engineering science technology		BC	DR	E	HC	DI	_E	ELC	C				Hol	e:	212	
Geotech BH m.	Locatio Project	t: on:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK S1607.7	E	Northir Easting Ground Fop Ca	g: d Ele		58 51	09. 0.1 1.0		m า า		Di Di Lo	oggeo	Met d by:	hod:	CMI Soli JR	2 of lune 2012 ∃ d Stem	
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp g	le N, TAS	usc	% Sulphate		F stic nit M	re Co bercent Natural Moisture 50	Liquid	Unco		00 Streng cket Po	220 th - kP en.Lab	<u>00</u> a Vane	Const	ometer ruction etail
500 499 498 498			CLAY: Clay, some silt. Dark gray (2.5Y 4/1). Oxidized. Calcareous. Moist. Iron staining. @ 10.7m: No iron staining. Unoxidized. SAND: Fine to medium grained sand, some silt, trace clay. Dark gray (2.5Y 4/1). Unoxidized. Calcareous. Moist. Organic inclusions.		CF4			-											50mm Sch40 Slotted PVC
496								-											Slough
495			NOTES: Completed to 15.2m. Sloughed to 2.6m.		CF5			-											
493	3 17 17 							-											
492	- - - - - - - - - - - - - - - - - - -																		
491																			

m Elev CAL v07.ldf	C		Clifton Associates Ltd. engineering science technology		BC	DR	E	H	O	LE		LO	G			ore _{ge:}	Нс	le:		213	2
Geotech BH	Client: Project Locatio	n:	Urban Elements Development Corp. Grasswood Estates Saskatoon, SK S1607.7	E	Northir Easting Ground Fop Ca	g: d Ele		54 57	498 10.4	.474 .802 485n 624n	:m n			Di Di Lo	ate D ill: illing gge	Drille g Me d by	thod	CN : So JR	Jun /IE lid S	e 2012	
	Elev (m) Depth (m)	Symbol	Soil Description	Type	Samp <u>'</u>	le N, LdS	usc	% Sulphate		Istic	perco Nati	ural L ture L	ent Liquid Limit + 100	Unco	18 Shear nf. Po	300 Stren ocket F	 gth - k	200 .Pa b Vane	-	Const	ometer truction etail
500	10		CLAY: Clay, and silt, trace sand. Olive brown (2.5Y 4/2). Oxidized. Calcareous. Moist. Iron staining.	-																	
499			SAND: Fine to medium grained sand, some silt, trace clay. Dark gray (2.5Y 4/1). Unoxidized. Calcareous. Moist.																		50mm Sch40 Slotted PVC
498	- 12 				CF24																
497																					
496	5 — - - - - - - - - - - - - - - - - - - -																				Slough
495	5	<u></u>	NOTES: Completed to 15.2m. Sloughed to 6.1m.																-		
494	- - - - - - - - - - - - - - - - - - -																		-		
493	5																		-		
492																					
491																					

		S	SUMN	/IARY	OF	SAM	PLIN	g an		ABOR	ATC	RY [·]	TEST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	USC	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB1	BAG		4.4													
0.76	KB2	SY	270	5.3			NP	SM	0.0	84.2	16	6.8			N/A	N/A	
1.52	KB3	SY	300	25.8	23.9	68.2	44.3	СН	0.0	1.4	98	3.6			175	160	
2.29	KB4	SY	150	9.8			NP	SM	0.0	712.0	28	3.0			N/A	N/A	
3.05	KB5	SY	200	7.5											N/A	N/A	
4.57	KB6	SY	200	17.8			NP	SM	0.0	85.9	14	1.1			N/A	N/A	
6.10	KB7	SY	460	25.1													
7.62	KB8	BAG		34.0	23.6	57.9	34.3	СН	0.0	8.3	91	.7					
7.92	KB9	BAG		24.4													
9.14	KB10	BAG		38.9	28.7	77.9	49.2	СН	0.0	1.7	98	3.3					
10.67	KB11	BAG		34.6	24.0	74.6	50.6	СН	0.0	1.8	98	3.2					
12.19	KB12	BAG		27.0													
		Clifto enginee	n As: pring sc	social	t es Lt e echnolo	d. gy	PROJE LOCAT PROJE	ION	Grassw	irande Su vood, Sas					BOR	E HOL 101	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	G AN	ND LA	BOF	RATO	RY 1	EST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DEPTH	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	USC	GRAVEL	SAND	SILT	сгау	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB13	BAG		4.2					0.0	76.7	13.2	10.1					
0.76	KB14	SPT		3.8													
1.52	KB15	BAG		5.1													
2.29	KB16	SPT		4.9													
3.05	KB17	BAG		4.9													
4.57	KB18	SPT		4.7													
6.10	KB19	BAG		4.5													
7.62	KB20	SPT		4.2													
7.92	KB21	BAG		23.3													
9.14	KB22	SPT		26.2													
10.67	KB23	BAG		30.9													
12.19	KB24	SPT		27.5													
C				social sience t			PROJE LOCAT PROJE		Grassw	rande Si ood, Sas					BOR	E HOL 102	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	g an	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB25	BAG		6.4													
1.52	KB26	BAG		6.4													
2.29	KB27	BAG		12.6													
3.05	KB28	BAG		4.2													
4.57	KB29	BAG		11.7													
6.10	KB30	BAG		6.9													
C		Clifto enginee					PROJE(LOCATI PROJE(ON	Grassw		ubdivisio skatchew				BOR	E HOL I 103	E NO.

		S	UMN	IARY	OF	SAM	PLIN	G AN	ND LA	BOR	ATC	RY	rest	DAT	Ά		
	SAM	PLE				CONSI	STENCY			GRAD	ATION			SHEAI	R STR	ENGTH	
DEPTH	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	СГАУ	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB31	BAG		9.2			NP	SM	0.0	55.4	44	1.6					
1.52	KB32	BAG		11.8	19.5	43.3	23.8	CL	0.0	36.0	64	1.0					
2.29	KB33	BAG		16.5	18.9	49.1	30.2	CL	0.0	17.7	82	2.3					
3.05	KB34	BAG		18.6													
3.05	KB35	SY	310	23.4	26.4	63.7	37.3	СН	0.0	1.0	99	9.0			260+	290+	
4.57	KB36	BAG		13.5													
4.57	KB37	SY	260	9.1			NP	SM	0.0	57.0	43	3.0			260+	290+	
6.10	KB38	BAG		16.3													
7.62	KB39	BAG		28.7			NP	SM	0.0	77.3	22	2.7					
9.14	KB40	BAG		25.6													
C					tes Lt e echnolo		PROJE LOCAT PROJE		Grassw	rande Su ood, Sas					BOR	E HOL I 104	E NO.

		S	UMN	/IARY	OF	SAM	PLIN	G AN	ID LA	BOR	RATO	RY T	EST	DAT	A		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAF	R STRI	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	СГАҮ	SULPHATE CONTENT	COMPRESSION	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB41	BAG		9.8					0.0	14.9	61.3	23.8					
1.52	KB42	BAG		4.3													
2.29	KB43	BAG		4.1													
3.05	KB44	BAG		6.8													
4.57	KB45	BAG		25.5													
6.10	KB46	BAG		28.2													
C		Clifto enginee	on As: pring so	socia t cience t	tes Lt e echnolo	d. gy	PROJE LOCAT PROJE		Grassw	rande S vood, Sas					BOR	E HOL I 105	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	G AN	ND LA	BOF	RATO	RY	rest	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAI	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB47	BAG		5.2													
1.52	KB48	BAG		4.6													
2.29	KB49	BAG		16.3													
3.05	KB50	BAG		19.1													
4.57	KB51	BAG		26.4													
6.10	KB52	BAG		33.0													
6.10	KB53	SY	260	29.7											120	105	
C				social ience t			PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOL	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	g an	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STRI	ENGTH	
ДЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB54	BAG		5.9													
1.52	KB55	BAG		5.6													
2.29	KB56	BAG		27.8													
3.05	KB57	BAG		29.0													
4.57	KB58	BAG		31.9													
6.10	KB59	BAG		36.0													
		Clifto enginee				d.	PROJE(LOCATI PROJE(ON	Grassw		ubdivisio skatchew			1	BOR	E HOL 107	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	G Al		ABOF	RATO	RY [·]	TEST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
DEPTH	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB60	BAG		26.1													
1.52	KB61	BAG		36.0			NP	SM	0.0	79.2	20).8					
1.52	KB62	SPT		17.9													
2.29	KB63	BAG		6.7			NP	SM	0.0	79.8	20).2					
2.29	KB64	SPT		9.0													
2.29	KB64B	SPT		35.5													
3.05	KB65	BAG		22.4	19.9	33.7	13.8	CL	0.0	20.6	79).4					
3.05	KB66	SPT		16.4													
4.57	KB67	BAG		22.6													
6.10	KB68	BAG		25.4													
6.71	KB69	BAG		35.1	16.4	51.9	37.3	СН	0.0	3.4	96	6.6					
7.62	KB70	BAG		24.7													
9.14	KB71	BAG		23.0													
10.67	KB72	BAG		25.1													
12.19	KB73	BAG		25.4													
C				social sience t			PROJE LOCAT PROJE	ION		rande Si vood, Sas					BOR	E HOL	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	g an	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB74	BAG		6.2													
1.52	KB75	BAG		5.4													
2.29	KB76	BAG		10.4													
3.05	KB77	BAG		30.7													
3.05	KB78	SY	230	23.9											N/A	N/A	
4.57	KB79	BAG		36.1													
4.57	KB80	SY	390	22.5											30	35	
6.10	KB81	BAG		25.8													
						<u> </u>											
C		Clifto enginee	n Ass ring sc	social tience t	t es Lt echnolo	d.	PROJE(LOCATI PROJE(ON	Grassw		ubdivisio skatchew				BOR	E HOL I 109	E NO.

		S	UMN	IARY	′ OF	SAM	PLIN	G AN	ND LA	BOF	RATO	RY 1	EST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	СГАҮ	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	KB82	BAG		12.8					0.0	25.4	36.2	38.5					
1.52	KB83	BAG		13.4													
2.29	KB84	BAG		22.9													
3.05	KB85	BAG		14.4													
4.57	KB86	BAG		11.7													
6.10	KB87	BAG		26.8													
C		Clifto enginee	n Ass ring sc	social ience to	es Lt e echnolo	d. gy	PROJE LOCAT PROJE		Grassw		ubdivisio skatchev				BOR	E HOL I 110	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	EST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
DEPTH	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	USC	GRAVEL	SAND	SILT	СГАҮ	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN25	BAG		18.0					0.0	74.6	12.6	12.8					
1.52	MN26	BAG		23.7													
2.29	MN27	BAG		24.4													
3.05	MN28	BAG		26.4													
4.57	MN29	BAG		26.2													
6.10	MN30	BAG		36.1													
7.62	MN31	BAG		35.6													
9.14	MN32	BAG		34.8													
10.67	MN33	BAG		34.9													
12.19	MN34	BAG		33.5													
13.72	MN35	BAG		36.0													
C				social sience t			PROJE LOCAT PROJE		Grassw	rande Si ood, Sas					BOR	E HOL	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	g an	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
ДЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN13	BAG		10.4													
1.52	MN14	BAG		25.1													
2.29	MN15	BAG		34.2													
3.05	MN16	BAG		32.1													
4.57	MN17	BAG		29.5													
6.10	MN18	BAG		31.8													
C		Clifto enginee					PROJEC LOCATI PROJEC	ON	Grassw		ubdivisio skatchew				BOR	E HOL 112	E NO.

		S	UMN	/ IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	EST	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN19	BAG		8.4					0.0	32.3	50.4	17.2					
1.52	MN20	BAG		10.6													
2.29	MN21	BAG		15.5													
3.05	MN22	BAG		26.9													
4.57	MN23	BAG		37.3													
6.10	MN24	BAG		36.7													
		Clifto enginee	n As:	social tience to	es Lt e echnolo	d. gy	PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOL I 113	E NO.

		S	UMN	/ IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
ДЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN36	BAG		15.5													
1.52	MN37	BAG		18.1													
2.29	MN38	BAG		29.8													
2.44	MN39A	SY	395	38.1											65	65	
3.05	MN39B	BAG		37.9													
4.57	MN40	BAG		32.4													
6.10	MN41	BAG		28.1													
				social ience to			PROJE LOCAT PROJE		Grassw		ubdivisio skatchew			1	BOR	E HOL	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSI	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN58	BAG		6.9									0.01				
1.52	MN59	BAG		22.8									0.14				
2.29	MN60	BAG		33.4													
3.05	MN61	BAG		34.4													
4.57	MN62	BAG		37.7													
6.10	MN63	BAG		32.8													
				social cience t			PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOL I 115	E NO.

		S	UMN	/ IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	TEST	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN1	BAG		19.9									0.74				
1.52	MN2	BAG		23.4									1.11				
2.29	MN3	BAG		29.5													
3.05	MN4	BAG		30.5													
4.57	MN5	BAG		33.4													
6.10	MN6	BAG		30.5													
C		Clifto enginee	n As:	social	echnolo	d. gy	PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOL I 116	E NO.

		S	UMN	/IARY	′ OF	SAM	PLIN	g an	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAR	R STR	ENGTH	
ДЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN7	BAG		11.2													
1.52	MN8	BAG		5.6													
2.29	MN9	BAG		30.8													
3.05	MN10	BAG		28.6													
4.57	MN11	BAG		34.7													
6.10	MN12	BAG		40.2													
C		Clifto enginee				d.	PROJEC LOCATI PROJEC	ON	Grassw		ubdivisio skatchew				BOR	E HOL I 117	E NO.

		S	SUMN	/IARY	′ OF	SAM	PLIN	G AN	ID LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAM	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
ДЕРТН	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN52	BAG		6.2													
1.52	MN53	BAG		30.5													
2.29	MN54	BAG		33.3													
3.05	MN55	BAG		31.5													
3.05	MN55A	SY	250	12.2											165	180	
4.57	MN56	BAG		34.0													
6.10	MN56	BAG		22.8													
		<u></u>								<u></u>							
C		Clifto enginee	n Ass ring sc	social ience to	es Lt e echnolo	d. gy	PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOLI 118	E NO.

		S	UMN	/ IARY	′ OF	SAM	PLIN	G AN	ND LA	BOF	RATO	RY 1	rest	DAT	Ά		
	SAN	IPLE				CONSIS	STENCY			GRAD	ATION			SHEAF	R STR	ENGTH	
DEPTH	NUMBER	ТҮРЕ	RECOVERY	WATER CONTENT	PLASTIC LIMIT	LIQUID LIMIT	PLASTICITY INDEX	nsc	GRAVEL	SAND	SILT	CLAY	SULPHATE CONTENT	COMPRESSION TEST	LAB VANE	POCKET PEN	DRY DENSITY
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
0.76	MN42	BAG		10.2													
1.52	MN43	BAG		9.4													
2.29	MN44	BAG		8.6													
2.74	MN44A	SY	220	2.8											N/A	N/A	
3.05	MN45	BAG		3.7													
4.57	MN46	BAG		23.9													
6.10	MN47	BAG		30.1													
7.62	MN48	BAG		28.0													
9.14	MN49	BAG		26.8													
10.67	MN50	BAG		33.4													
12.19	MN51	BAG		26.7													
C				social ience to			PROJE LOCAT PROJE		Grassw		ubdivisio skatchew				BOR	E HOL	E NO.

	San	nple					stency	8		Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.52	CF27	Bag		13.7	21.6	23.0	1.3	SM	0.0	74.6	8.1	17.3					
-																	
Remarks	:																
		Approved by:															
		Clift engine	on A eering	ssocio science	ates L technol	td. logy		Project Locatior Project 1			od Area,	vestigation near Sasl		K	Во	201	No.

	San	nple					stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.52	CF29	Bag		11.6]	Non Plasti	c	SM	0.0	75.3	24	1.7					
-																	
Remarks	:																-
		Approved by:															
		Clift engine	on A	SSOCIC science	techno	td. logy		Project Location Project I		Hydroge Grasswo S1607.7	od Area,		n katoon, S	K	Вс	prehole I 202	No.

	San	nple				Consi	stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.22	CF32	Bag		20.6	19.4	27.7	8.3	CL	0.0	44.4	33.1	22.5					
3.05	CF33	Bag		26.9	1	Non Plasti	c	SM	0.0	75.1	15.0	9.9					
Remarks	:		1	1	1		1				1	l	1	1	1	1	
									-								
		Clift engine	on As eering	550CiC science	ites L technol	td. logy		Project Location Project N		Hydroge Grasswo S1607.7		vestigation near Sasl		K	Во	203	No.

	San	nple					stency	8		Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	usc	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.52	CF34	Bag		9.0]	Non Plasti	с	SM	0.0	85.1	24	1.9					
8.53	CF35	Bag		35.3	26.1	30.6	4.5	CL-ML	0.0	31.8	51.6	16.7					
Remarks	:																-
		Approved by:															_
		Clift engine	on A eering	5 50CiC science	ates L techno	td. logy		Project Location Project N		Hydroge Grasswo S1607.7				K	Bo	prehole 1 204	No.

	San	nple					stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
5.18	CF21	Bag		31.3	I	Non Plasti	c	SM	0.0	70.2	29	9.8					
Remarks	:																-
		Approved by:															-
		Clift engine	on A eering	ssocic science	ates L techno	td. logy		Project Locatior Project 1		Hydroge Grasswo S1607.7	od Area,		n katoon, S	K	Вс	prehole I 205	No.

	San	nple				Consi	stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
3.05	CF10	Bag		18.9	l	Non Plasti	c	SM	0.0	71.8	28	3.2					
Remarks	:																-
		Approved by:															
		Clift engine	on A eering	ssocic science	ates L techno	td. logy		Project Locatior Project 1		Hydroge Grasswo S1607.7	od Area,		n katoon, S	K	Во	prehole I 206	No.

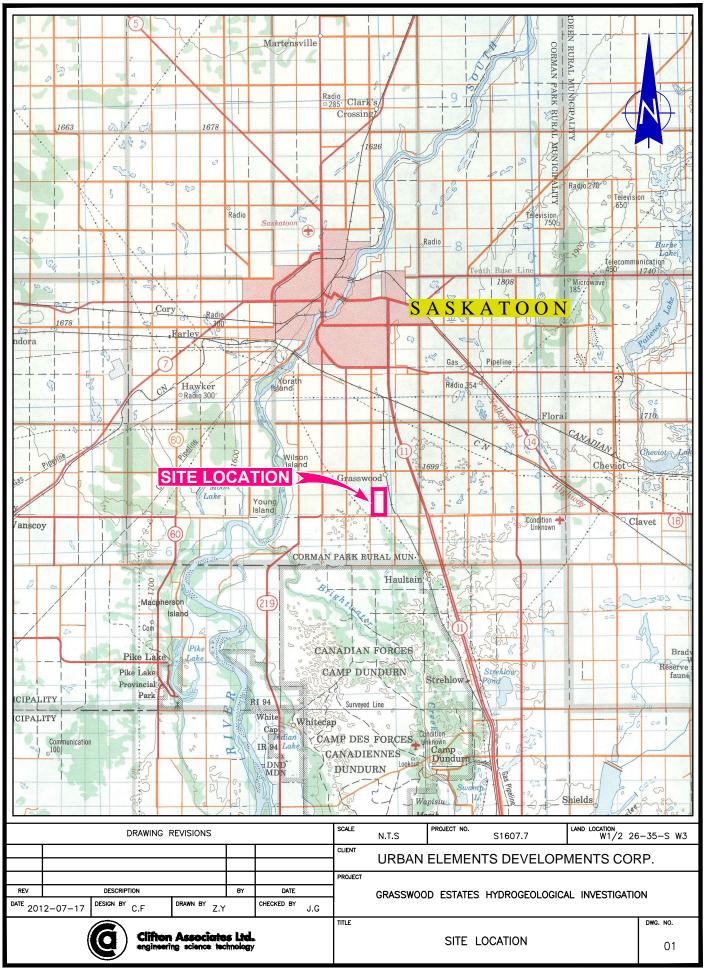
	San	nple				Consi	stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
4.57	CF8	Bag		30.8		Non Plasti	с	SM	0.0	80.3	1	9.7					
Remarks:																	
Kemarks:																	-
		Approved by:															-
		Clift engine	on As eering	ssocic science	ites l techno	td. logy		Project Locatior Project	ı		od Area,	vestigatio near Sasl		K	Во	prehole I 207	No.

	San	nple					stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
Remarks	:															-	
		Approved by:															-
		Clift engine	on As eering	ssocio science	ates L techno	td. logy		Project Location Project N			od Area,	vestigatio near Sasl		K	Во	208	No.

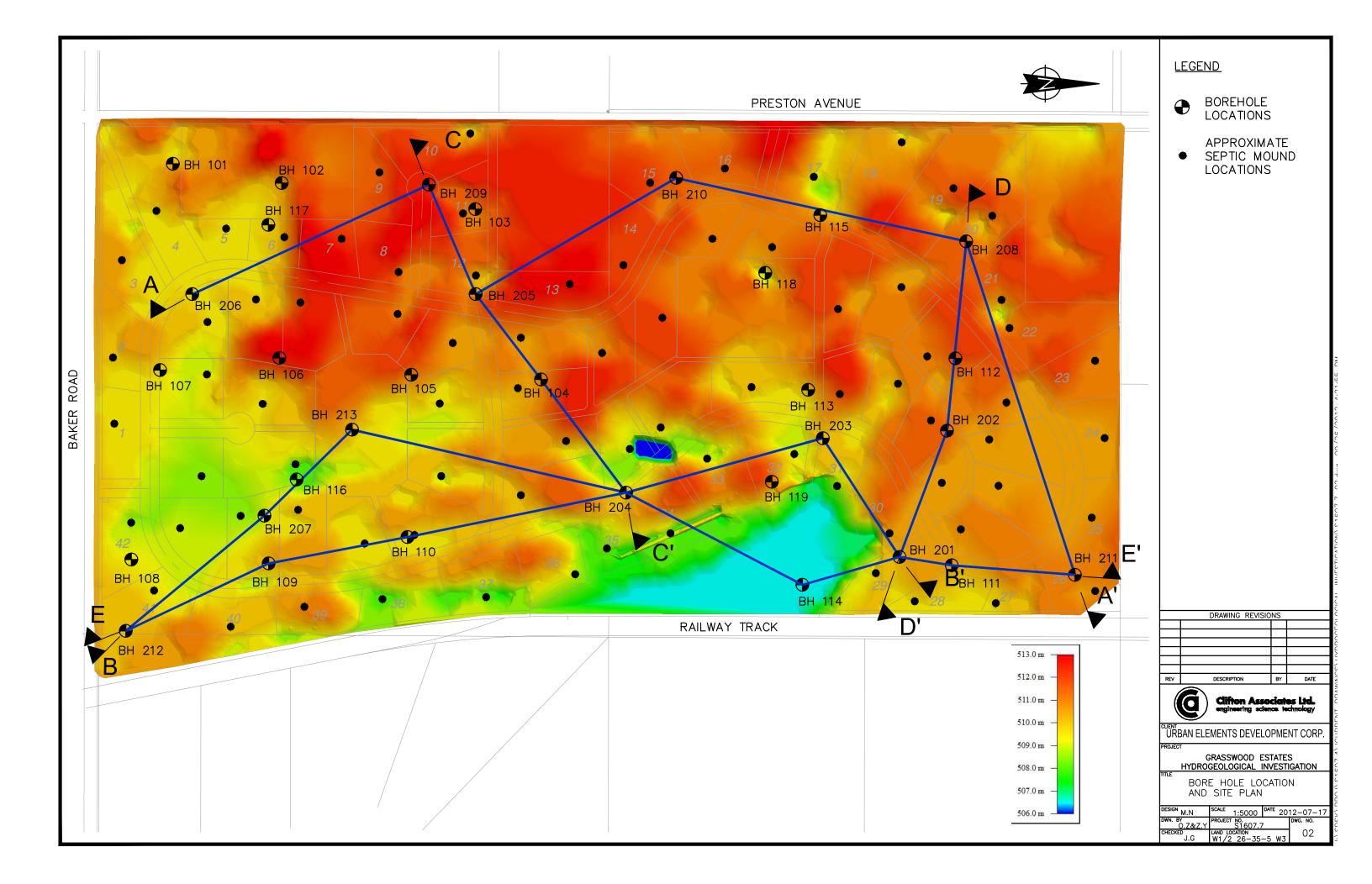
	Sample					Consi	stency			Grad	lation			Sh	ear Stren	gth			
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density		
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³		
1.60	CF20	Bag		15.4	23.0	23.9	0.9	SM	0.0	65.5	19.7	14.9							
Remarks	•	No denth	noted on	grab bag fo	or CF20						1					1			
Kemar K5	•		noted on																
											4	nored bru					-		
											App	roved by:							
		Clift engine	on A eering	ssocic science	ates L techno	td. logy		Project Locatior Project 1			ology Inv ood Area,			K	Во	orehole M 209	No.		

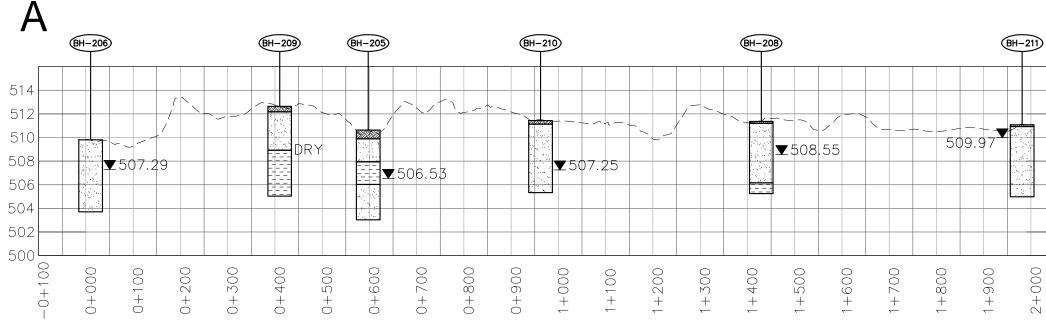
	San	nple				Consi	stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	W ater Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.52	CF36	Bag		9.3	-	Non Plasti	с	SM	0.0	80.8	1	9.2					
Remarks	:																
											Арр	proved by:					-
		Clift engine	on A eering	ssocic science	techno	logy		Project Location Project 1			od Area,	vestigatio , near Sasl		K	Во	210	No.

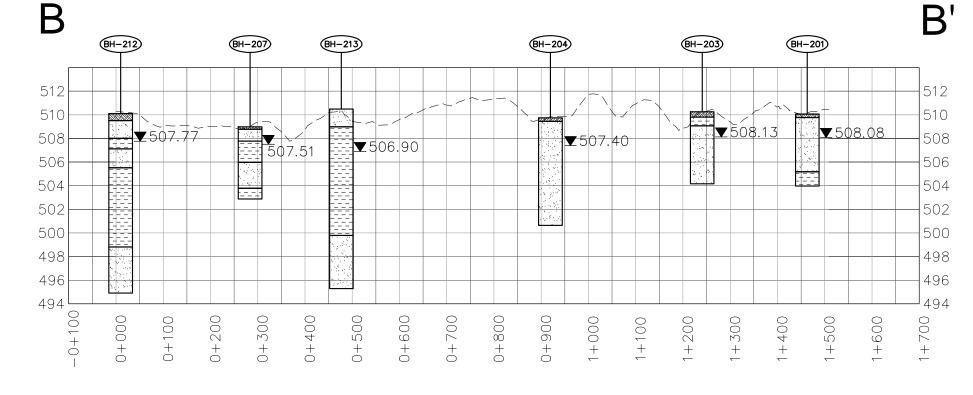
	San	nple					stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
1.52	CF28	Bag		23.5	l	Non Plasti	с	SM	0.0	84.3	15	5.7					
Remarks	:											-					
											App	roved by:					
	Clifton As engineering				ates L techno	td. logy		Project Location Project I		Hydroge Grasswo S1607.7				K	Во	orehole I 211	No.

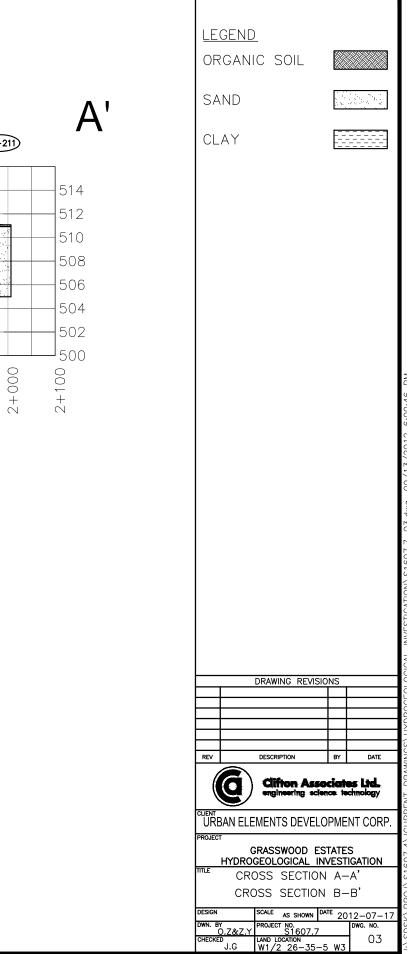

	San	nple				Consi	stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit	Liquid Limit	Plasticity Index	USC	Gravel	Sand	Silt	Clay	Sulphate Content	Compression Test	Lab Vane	Pocket Penetrometer	Dry Density
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
4.11	CF2	Bag		23.2	1	Non Plasti	c	SM	0.0	69.9	14.0	16.1					
Remarks	:																
												roved by:					- - -
	Clifton A engineering				ates L techno	td. logy		Project Location Project N			ology Inv od Area,			K	Bo	212	No.

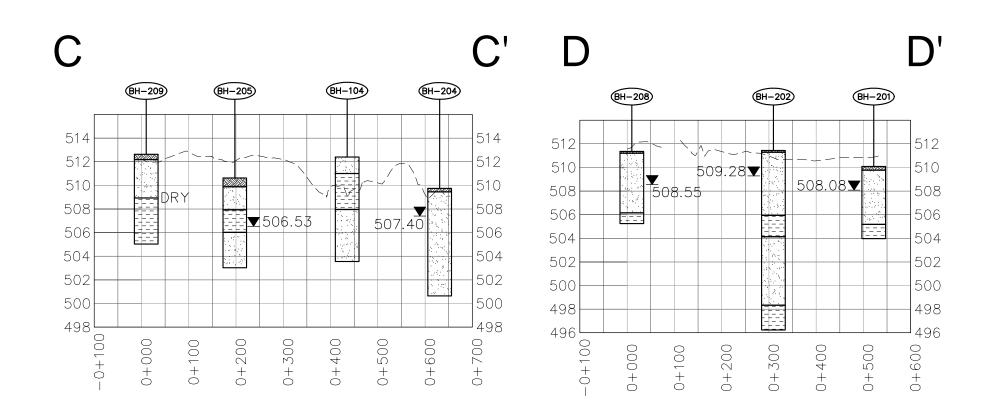
	Sample						stency			Grad	lation			Sh	ear Stren	gth	
Depth	Number	Type	Recovery	Water Content	Plastic Limit								Compression Test	Lab Vane	Pocket Penetrometer	Dry Density	
meters			mm	%	%	%	%		%	%	%	%	%	kPa	kPa	kPa	kg/m ³
3.05	CF23	Bag		26.9	20.2	37.8	17.6	CL	0.0	3.9	60.7	35.4					
Remarks	:		Approved by:									-					
		Clift engine	on As eering	ssocic science	ates L technol	td. logy		Project Location Project No	0.	Hydroge Grasswo S1607.7	ology Inv	vestigation	n	K	В	213	No.

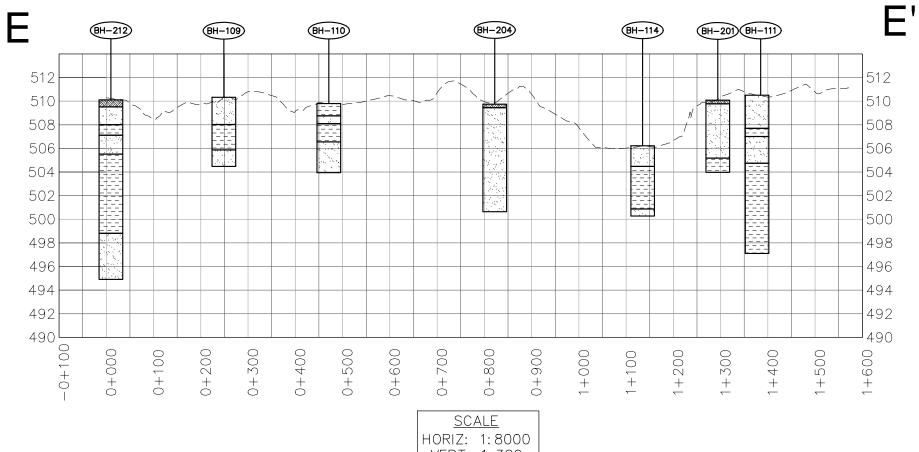




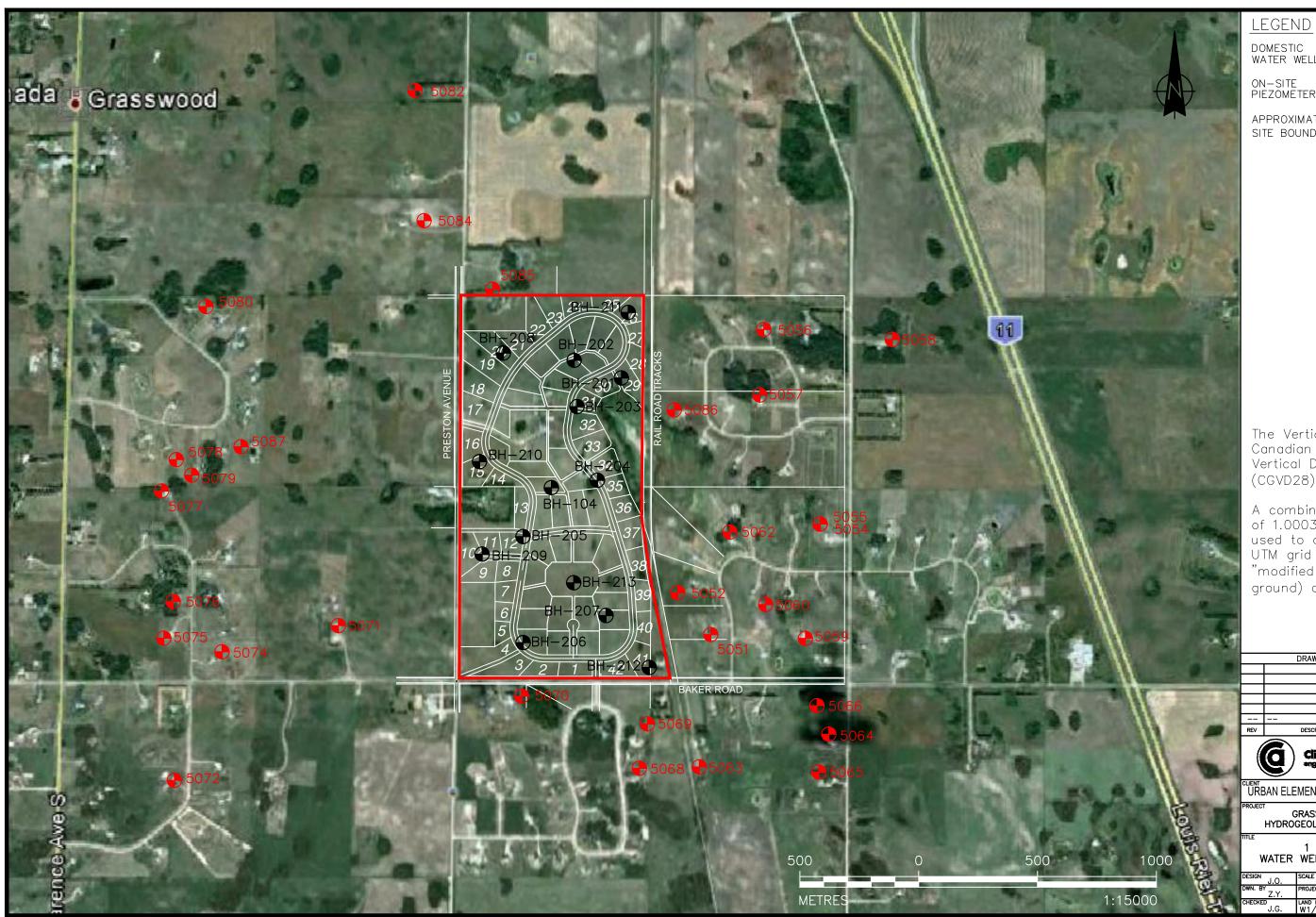

Drawings


J:\SDSK\PROJ\S1607.4\!CURRENT DRAWINGS\HYDROGEOLOGICAL INVESTIGATION\S1607.7-01.dwg



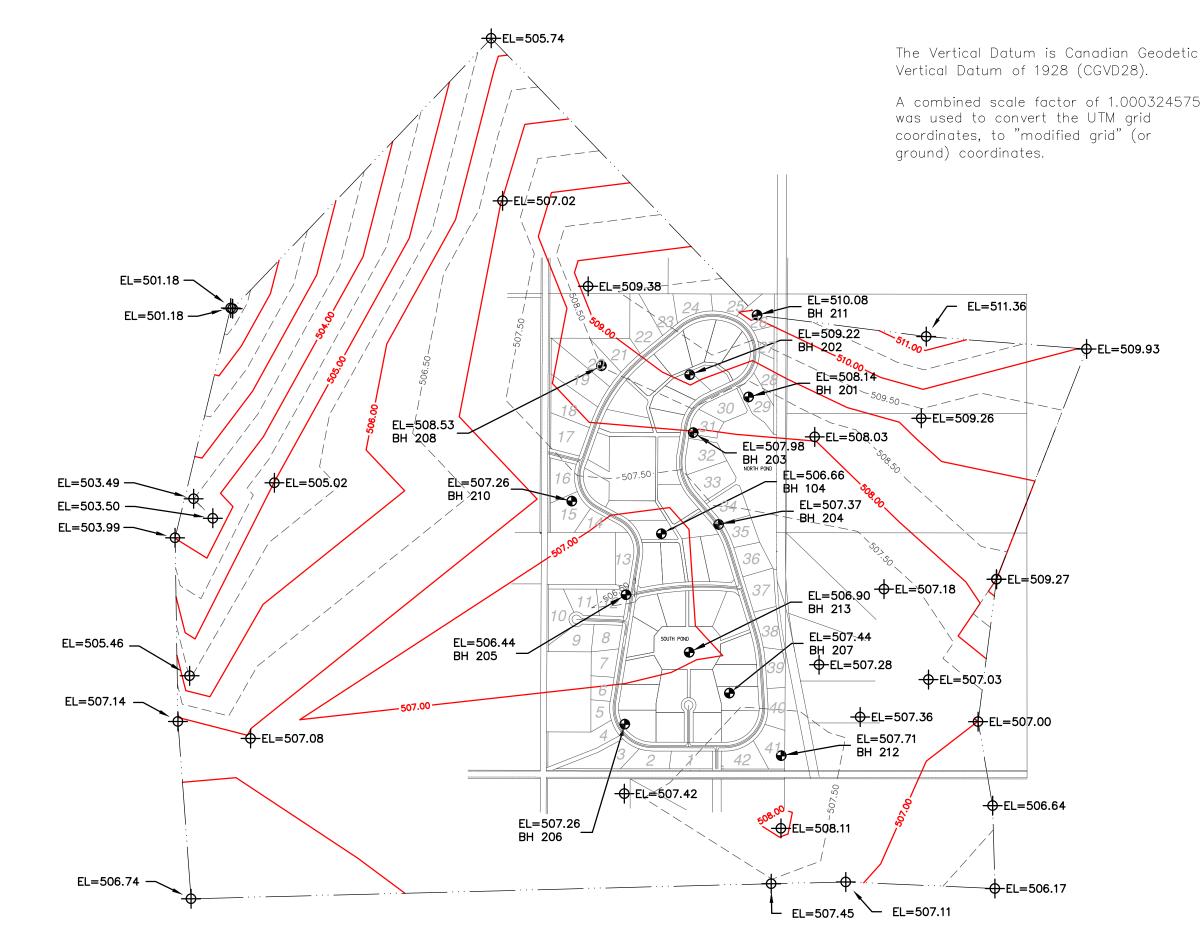


<u>SC</u>	<u>ALE</u>
	1: 8000 1: 320



VERT: 1:320

<u>LE</u>	GEND	_				
OR	GANI	С	SOIL			
SA	ND					
CL	AY					
			WING REV		10	
				13101		
REV		DESC	RIPTION		BY	DATE
	a)	Ċ	iften A g gineering a	ISOC Icienc	iatı s tə	s Lid. chnology
		MEN				NT CORP.
PROJEC	r		SWOOD			
ITLE	HYDRO	GEO	LOGICAL SECTION	INV	EST	IGATION
			SECTI			
DESIGN		SCALE	AS SHOWN	DATI	^E 20	12-07-17
OWN. B' (CHECKE	ን 7&7 YI	PROJE	CT NO. S1607 LOCATION	.7		dwg. no. 04

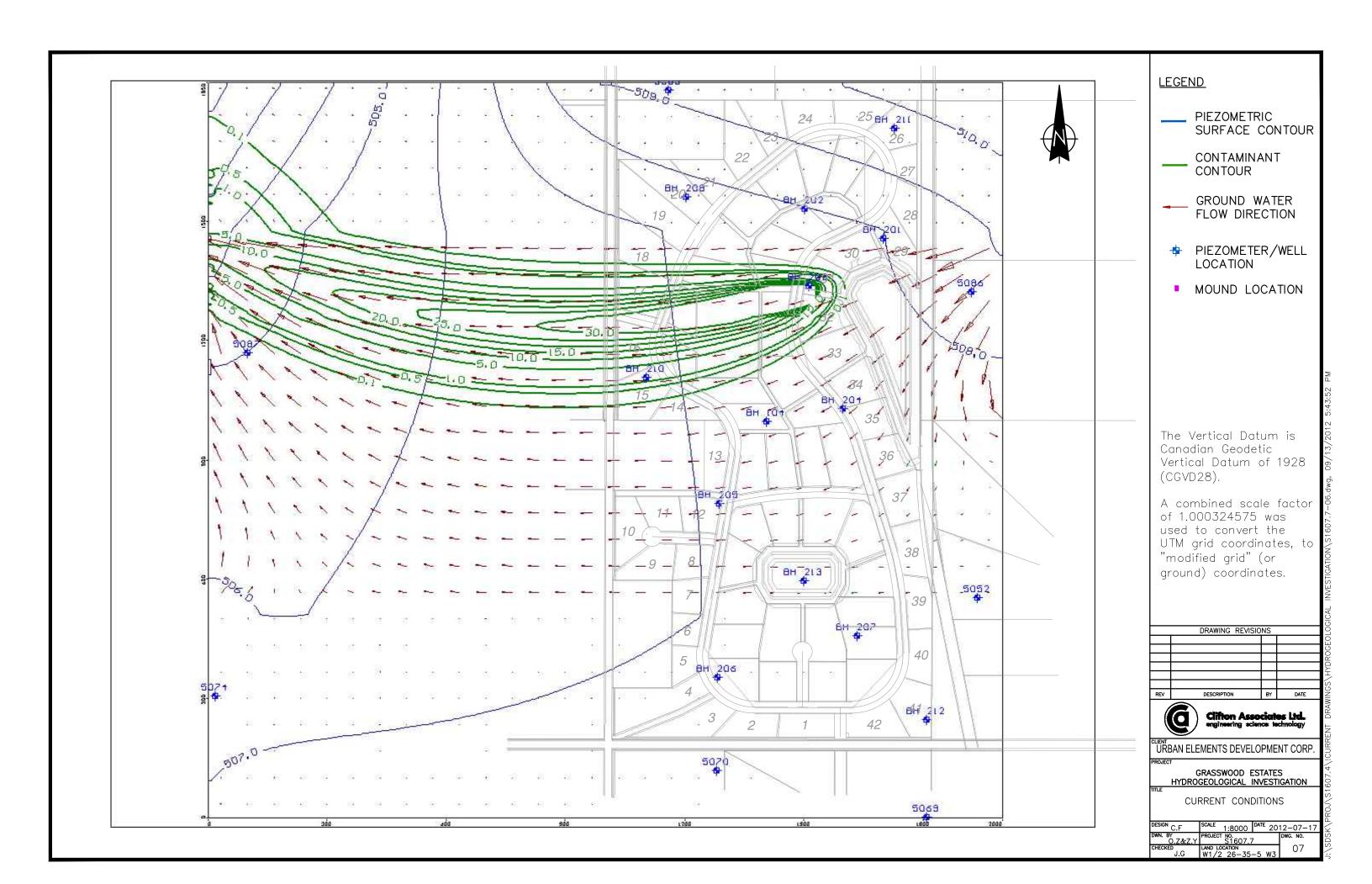


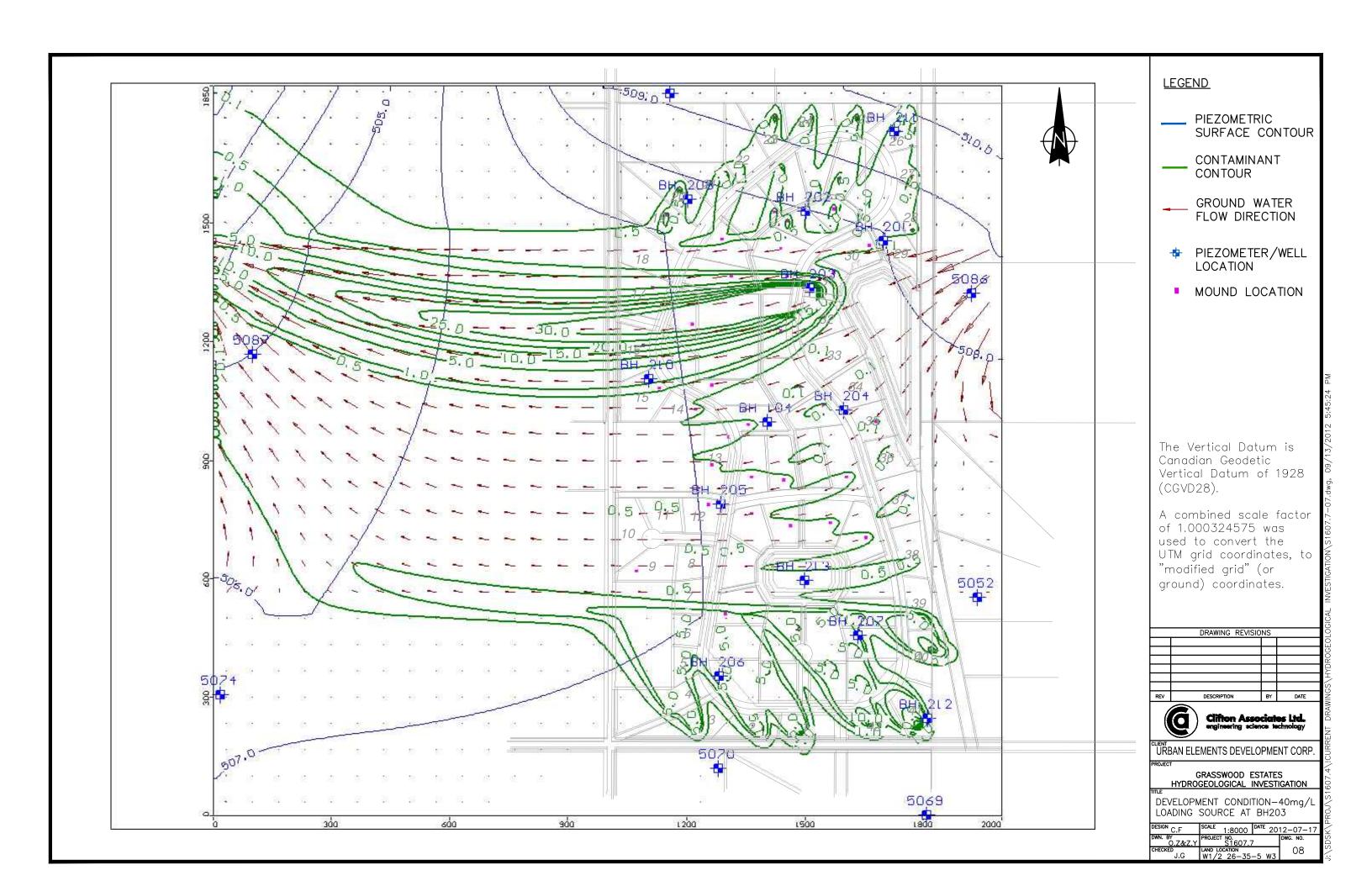
DOMESTIC WATER WELL ON-SITE PIEZOMETER \bullet APPROXIMATE SITE BOUNDARY The Vertical Datum is Canadian Geodetic Vertical Datum of 1928 (CGVD28). A combined scale factor of 1.000324575 was used to convert the UTM grid coordinates, to "modified grid" (or ground) coordinates. DRAWING REVISIONS DESCRIPTION BY DATE Clifton Associates Ltd. engineering science technology URBAN ELEMENTS DEVELOPMENT CORP. GRASSWOOD ESTATES HYDROGEOLOGICAL INVESTIGATION 1 KM RADIUS WATER WELL LOCATION PLAN
 J.O.
 Scale PROJECT NO. S1607.4
 Date 2012-07-17

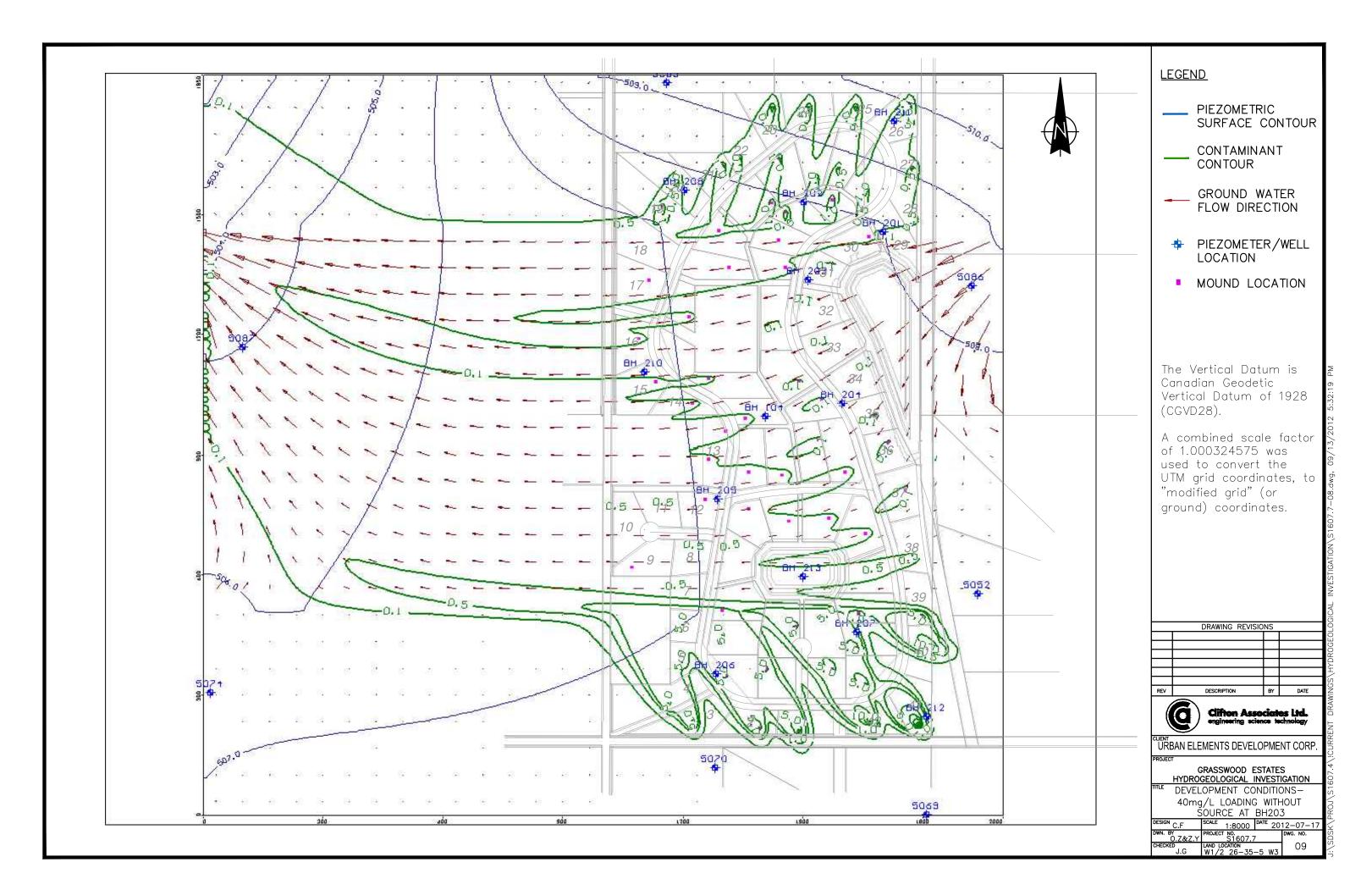
 WN. BY Z.Y.
 PROJECT NO. S1607.4
 DWG. NO.

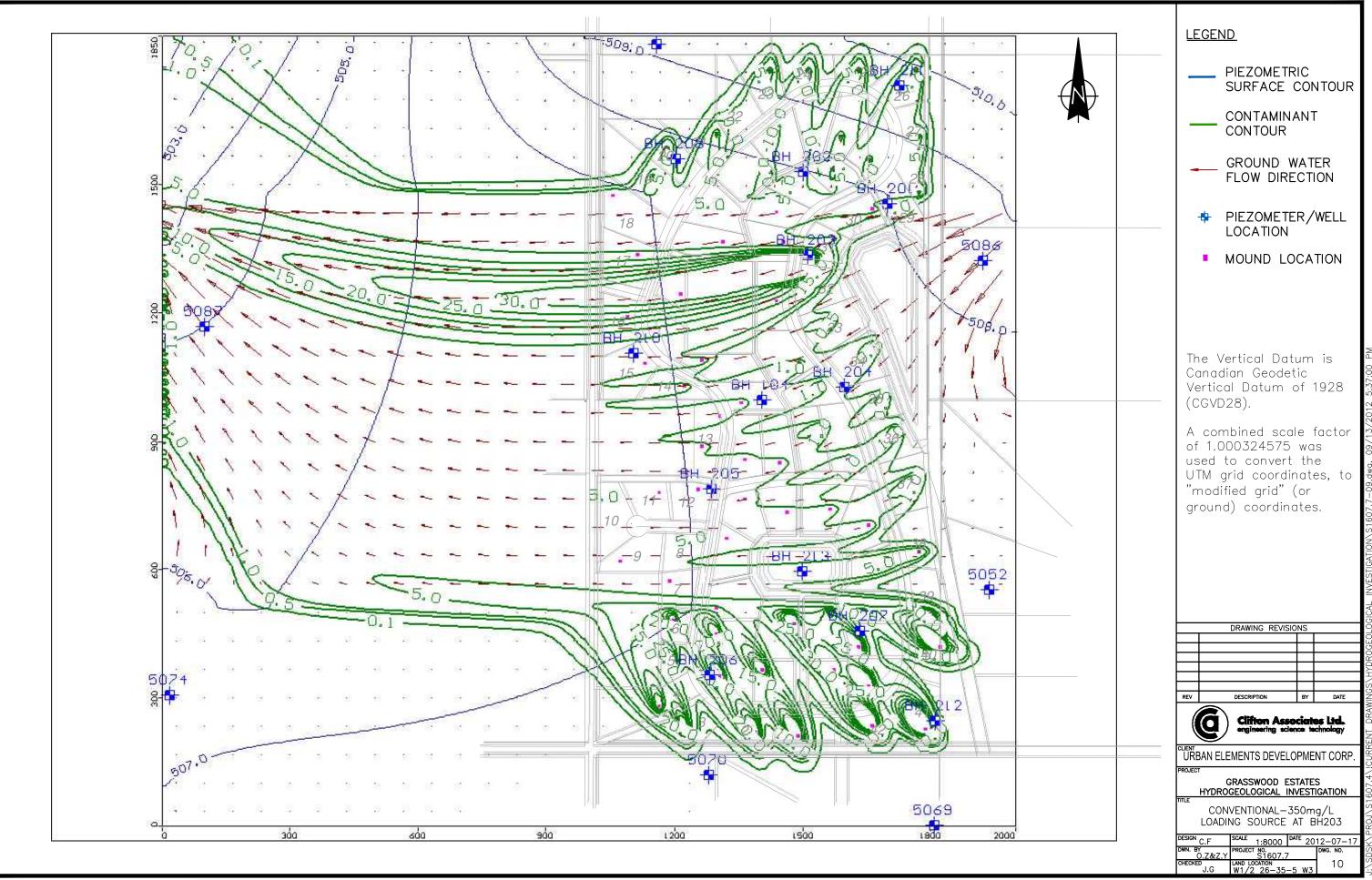
 S1607.4
 DWG. NO.

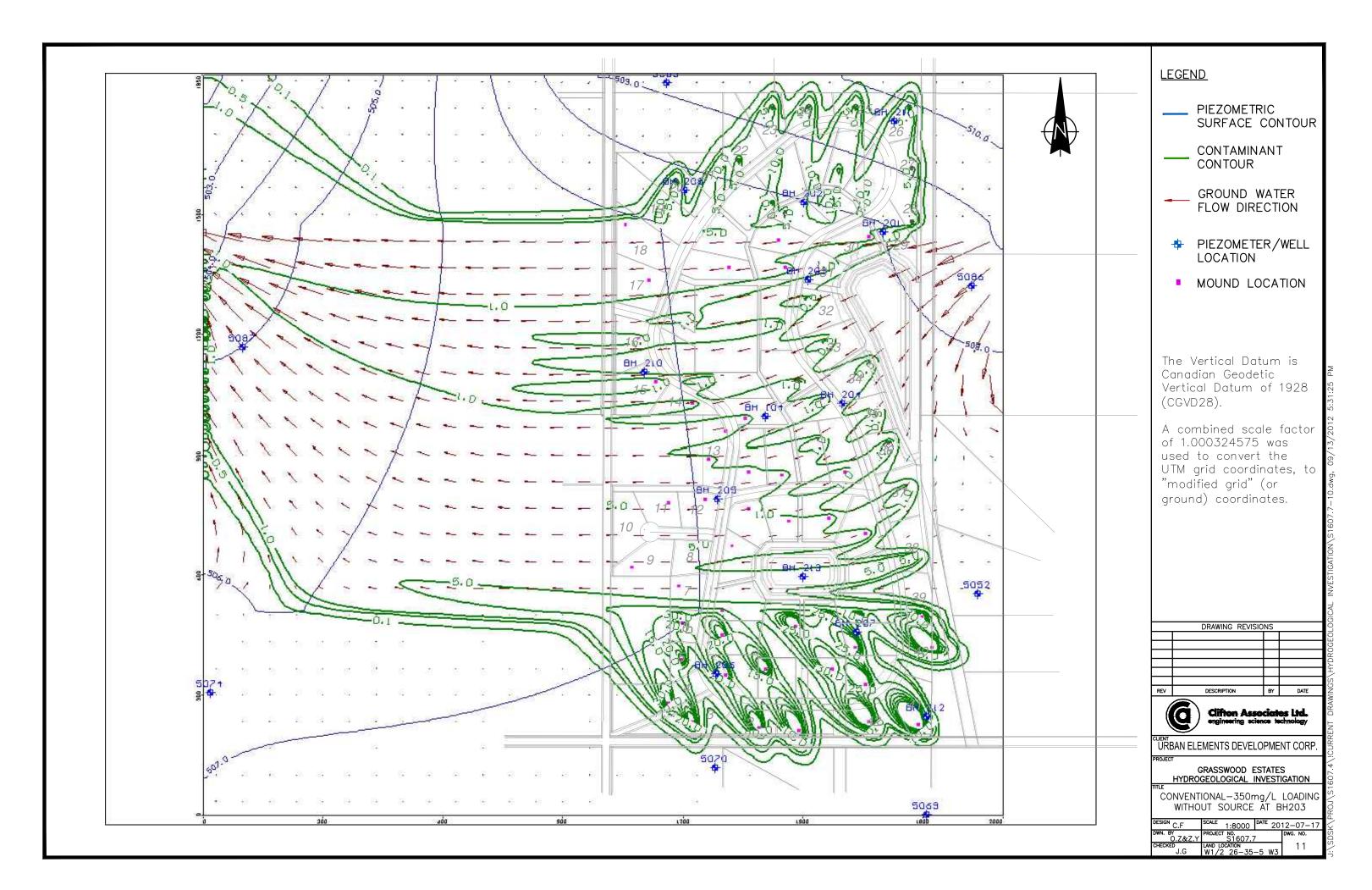
 J.G.
 LAND LOCATION W1/2 26-35-5 W3
 05

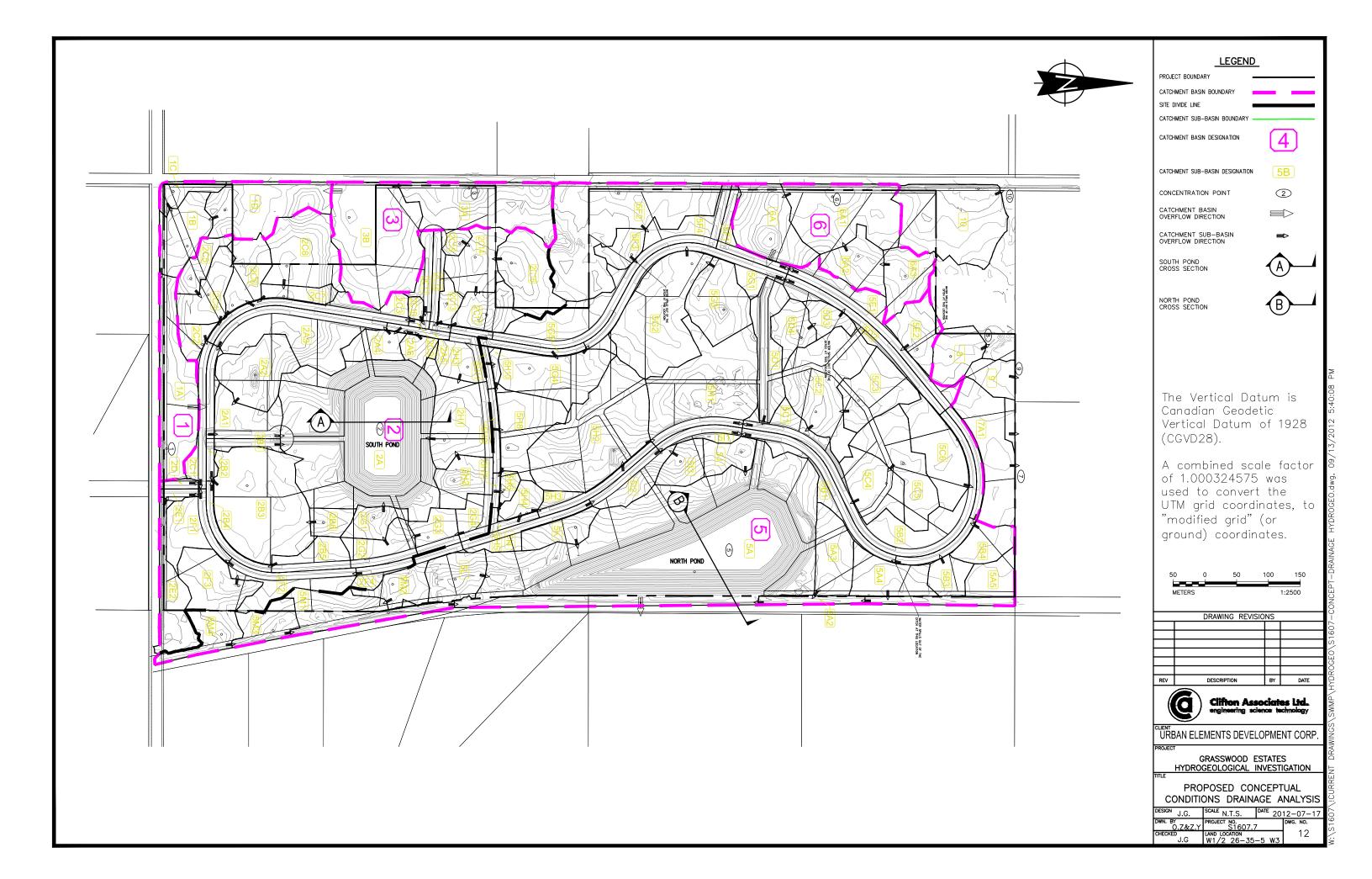


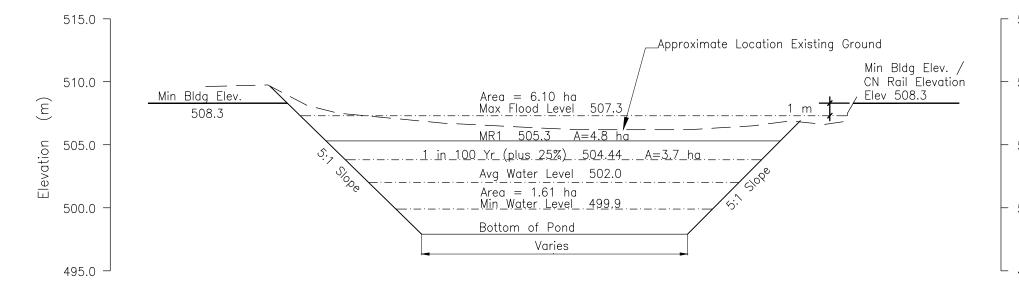

BOREHOLE WATER WELLS MAJOR CONTOUR

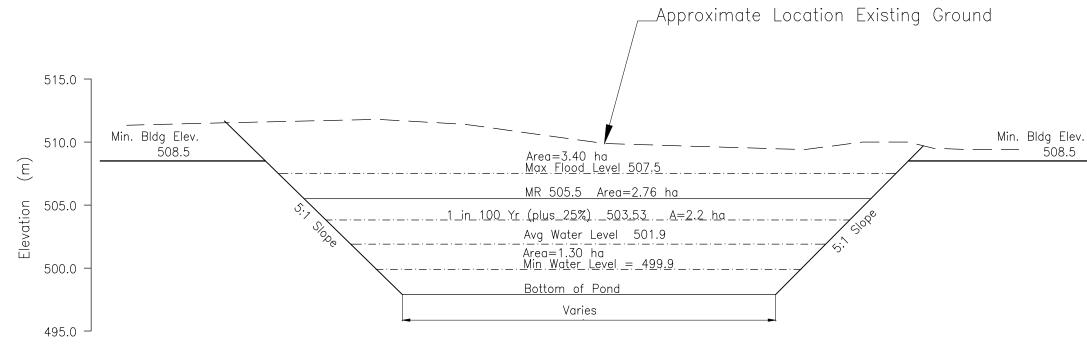

MINOR CONTOUR

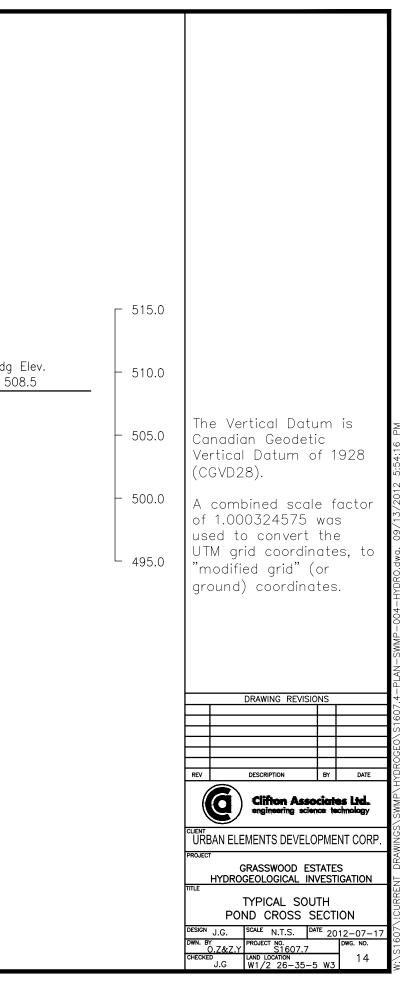


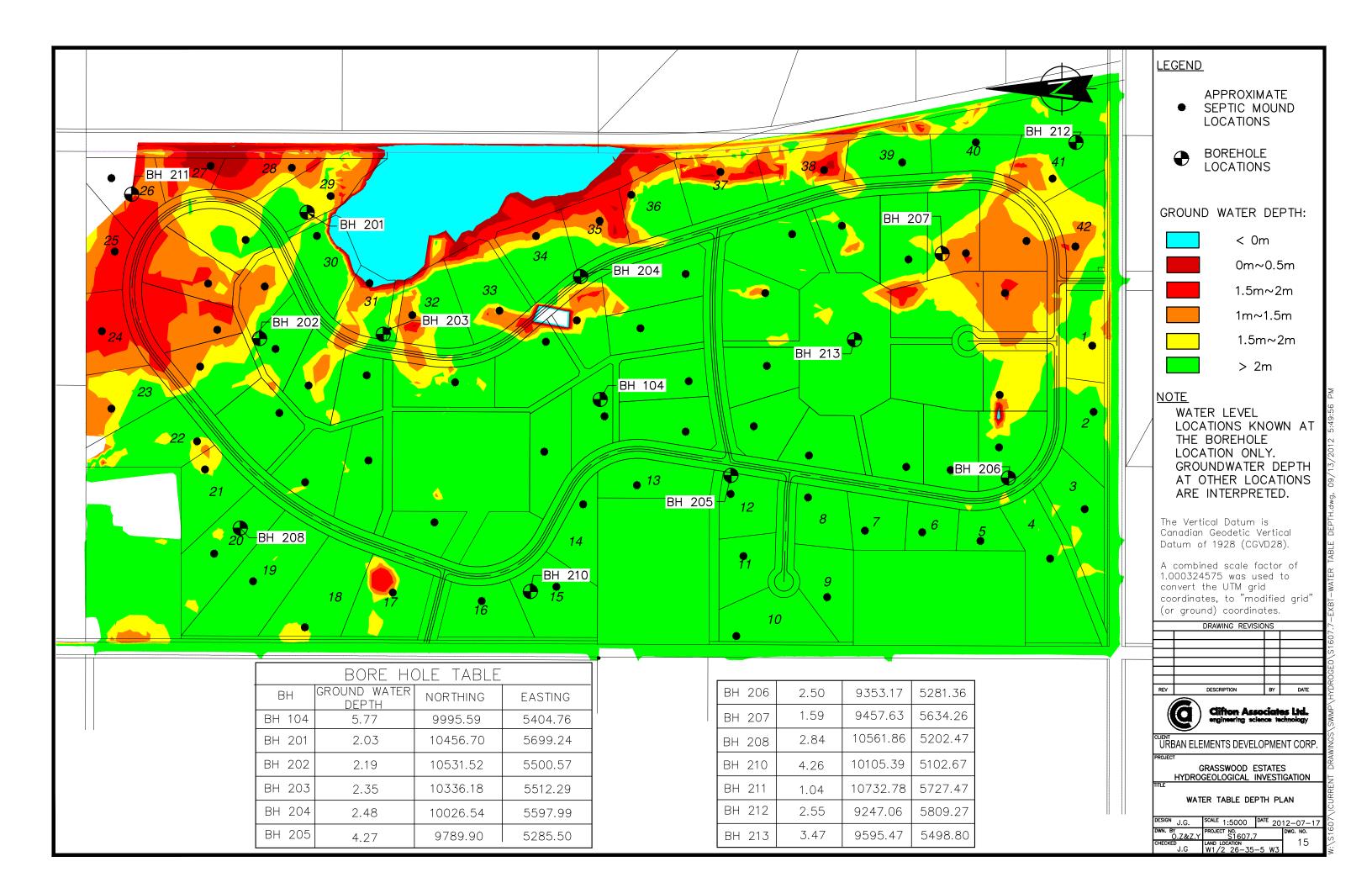

DRAWING REVISIONS BY REV DESCRIPTION DATE **(G) Clifton Associates Ltd.** URBAN ELEMENTS DEVELOPMENT CORP ROJEC GRASSWOOD ESTATES HYDROGEOLOGICAL INVESTIGATION GROUND WATER PIEZOMETRIC SURFACE DESIGN J.G. SCALE N.T.S. DATE 2012-07-17 DWN. BY O.Z&Z.Y CHECKED J.G W1/2 26-35-5 W3 DWG. NO. 06











515.0	
J I J.U	
510.0	
010.0	
505.0	
505.0	
	The Vertical Datum is
500.0	Canadian Geodetic
500.0	Vertical Datum of 1928
	(CGVD28).
495.0	A combined scale factor
100.0	of 1.000324575 was
	used to convert the UTM grid coordinates, to
	"modified grid" (or
	ground) coordinates.
	DRAWING REVISIONS
	REV DESCRIPTION BY DATE
	The Vertical Datum is Canadian Geodetic Vertical Datum of 1928 (CGVD28). A combined scale factor of 1.000324575 was used to convert the UTM grid coordinates, to "modified grid" (or ground) coordinates. DRAWING REVISIONS DRAWING REVISIONS DRAWING REVISIONS DRAWING REVISIONS DRAWING REVISIONS DESCRIPTION BY DATE REV DESCRIPTION BY DATE REV DESCRIPTION BY DATE CLENT URBAN ELEMENTS DEVELOPMENT CORP. PROJECT CHECKED CRASSWOOD ESTATES HYDROGEOLOGICAL INVESTIGATION THE TYPICAL NORTH POND CROSS SECTION DESIGN J.G. SOLE N.T.S. DATE 2012-07-17 DWN: BY J.G. SOLE N.T.S. DATE
	CLIENT URBAN ELEMENTS DEVELOPMENT CORP.
	PROJECT GRASSWOOD ESTATES HYDROGEOLOGICAL INVESTIGATION
	TYPICAL NORTH POND CROSS SECTION
	DESIGN J.G. SCALE N.T.S. DATE 2012-07-17 DWN. BY O.Z&Z.Y PROJECT NO. 0.Z&Z.Y S1607.7 DWG. NO.
	CHECKED J.G W1/2 26-35-5 W3

Tables

Table 3.2-1Site Groundwater Elevations & Field MeasurementsGrasswood Hydrogeology

Piezometer #	Top Casing Elevation (m)	Ground Elevation (m)	Casing Height (m)	Water Elevation	July 4 Mbgs	July 31 Mbgs	Dissolved Oxygen Field Recordings July 31	Temp July 31	pH July 31
BH104	513.3	512.4	0.9	506.6	5.8	5.6	19.2	10.8	7.3
BH201	511.2	510.1	1.1	508.1	2.0	2.1	22.2	13.4	7.1
BH202	512.5	511.4	1.1	509.3	2.2	2.4	14.2	13.9	7.0
BH203	511.3	510.3	1.0	508.1	2.1	2.5	24.6	12.5	7.1
BH204	510.8	509.7	1.1	507.4	2.3	2.4	32.2	12.4	7.3
BH205	511.6	510.6	0.9	506.5	4.1	4.0	37.5	9.7	7.2
BH206	510.7	509.8	0.9	507.3	2.5	2.7	25.1	12.2	7.2
BH207	509.9	509.0	0.9	507.5	1.5	1.7	24.4	16.7	7.1
BH208	512.4	511.4	1.0	508.6	2.8	2.8	72.1	13.9	7.1
BH209	513.5	512.6	0.9	empty	-	-			
BH210	512.6	511.4	1.1	507.3	4.2	4.1	24.6	13.7	6.7
BH211	512.2	511.1	1.1	509.9	1.2	1.4	19.1	15.4	7.3
BH212	511.0	510.1	0.9	507.8	2.3	2.4	57.0	14.0	6.8
BH213	511.6	510.5	1.1	506.9	3.6	3.5	16.5	10.8	6.9

Table 3.4-1Surrounding Water Well ElevationsGrasswood Hydrogeology

Point #'s	Northing	Easting	OG Elev.	Water Elev.	Notes
5051	9377.513	6075.313	510.182	507.362	15 South Point Road
5052	9553.765	5936.28	508.153	507.283	25 South Point Road
5053	9857.034	6431.537	510.213	N/A	N/A
5054	9842.159	6534.961	509.977	508.307	65 South Point Road (Bitz)
5055	9842.105	6535.021	510.599	509.269	GA3-P Pizo
5056	10660.71	6297.974	513.732	511.357	85 Ashwood Drive
5057	10385.191	6281.368	511.445	509.255	98 Ashwood Drive
5058	10618.674	6838.906	514.752	509.932	25-35-5W3
5059	9361.743	6472.99	510.128	506.998	(North of lot 35404)
5060	9503.665	6305.784	508.493	507.028	58 South Point Lane
5062	9808.879	6155.499	508.827	507.177	45 Ashwood Drive
5063	8820.795	6026.795	509.993	507.113	NE35-35-5W3
				505.208 when	
5064	8958.519	6571.47	508.088	pump is running	505.788 when pump is off
5065	8799.128	6529.506	507.022	506.172	Lot 35362
5066	9078.634	6521.865	508.366	506.636	35362 Along TWP 3051
5068	8815.114	5774.974	510.736	507.446	19 Mandalay Drive
5069	9002.033	5808.279	508.646	508.106	25 Mandalay Drive
5070	9118.833	5279.528	510.405	507.415	Howard Butlers
5071	9414.796	4508.94	510.194	506.536	1751 Baker Road (Water was measured by farmer not witnessed)
5072	8764.306	3818.562	513.27	506.74	1450 Baker Road
5074	9305.192	4019.07	511.884	507.084	60 Casa Rio Road
5075	9362.539	3773.915	509.906	507.136	47 Casa Rio Road
5076	9516.415	3813.345	507.577	505.457	N/A
5077	9981.731	3764.573	508.464	503.994	22 Casa Rio Road
5078	10113.704	3827.195	508.923	503.493	75 Casa Rio Road
5079	10047.932	3891.604	509.475	503.505	65 Casa Rio Road
5080	10756.979	3952.047	503.823	501.183	15 Casa Rio Road
5081	10754.451	3958.523	503.809	501.183	Right Beside Point 5080
5082	11666.533	4830.799	508.237	505.737	Lot North 5044 Preston Drive
5084	11118.486	4869.115	513.176	507.016	N/A 5106 Prostor Drive
5085 5086	10830.083 10322.118	5157.474 5921.655	511.476 510.823	509.376 508.028	5196 Preston Drive 45 Ashwood Drive
5080 5087	10322.118	4099.522	506.781	505.016	55 Eldorado Lane

Table 4.2.1 Water and Soil Lab Results

		Sample ID		CAL104	BH201	BH202	BH203	BH204	BH205	BH206	BH207	BH208	BH210	BH211	BH213	BH212	DUP 1	DUP 2	
		ALS ID Date Sampled	Criteria	L1172891-8 7/4/2012 Water	L1172891-3 7/4/2012 Water	L1172891-2 7/4/2012 Water	L1172891-5 7/4/2012 Water	L1172891-7 7/4/2012 Water	L1172891-9 7/4/2012 Water	L1172891-11 7/4/2012 Water	L1172891-12 7/4/2012 Water	L1172891-4 7/4/2012 Water	L1172891-6 7/4/2012 Water	L1172891-1 7/4/2012 Water	L1172891-10 7/4/2012 Water	L1172891-13 7/4/2012 Water	L1172891-15 7/4/2012 Water	L1172891-14 7/4/2012 Water	L
Parameter	Units	Detection Limit	Saskatchewan Drinking t Water																
		Detterion Linit	Standards & Objectives																
Health and Toxicity Metals			Objectives																
Total Mercury in Water by CRC																			
Mercury (Hg)-Total	mg/L	0.00005	-	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	
Total Metals in Water by CRC I Aluminum (Al)-Total		0.01	-	37.4 *	10.5 *	1.24 *	150 *	8.21 *	72.6 *	88.0 *	0.76 *	8.33 *	58.9 *	4.64 *	0.586 *	79.6 *		89.5 *	
Arsenic (As)-Total	mg/L mg/L	0.0002	0.025	0.0516 *	0.0103 *	0.00346 *	0.268 *	0.0164 *	0.0629 *	0.0756 *	0.0023 *	0.0119 *	0.0779 *	0.00444 *	0.00213 *	0.0811 *	-	0.0881 *	
Barium (Ba)-Total	mg/L	0.0002	1	2.75 *	0.709 *	0.0686 *	23.1 *	0.683 *	3.20 *	4.93 *	0.0412 *	0.834 *	4.80 *	0.352 *	0.136 *	2.64 *	-	3.04 *	
Boron (B)-Total	mg/L	0.02	5	<0.10 *	0.060 *	0.188 *	0.23 *	0.052 *	<0.20 *	<0.20 *	0.43 *	0.025 *	<0.10 *	0.035 *	0.038 *	<0.20 *	-	<0.20 *	
Cadmium (Cd)-Total	mg/L	0.00002	-	0.00138 *	0.000302 *	0.000081 *	0.0108 *	0.000624 *	0.00179 *	0.00491 *	< 0.00020 *	0.000332 *	0.00282 *	0.000332 *	0.000025 *	0.00247 *	-	0.00273 *	
Chromium (Cr)-Total	mg/L	0.0002	-	0.0615 *	0.0155 *	0.00205 *	0.265 *	0.0131 *	0.115 *	0.147 *	<0.0020 *	0.0125 *	0.0978 *	0.00745 *	0.00127 *	0.132 *	-	0.147 *	
Copper (Cu)-Total	mg/L	0.001	1	0.0629 *	0.0278 *	0.0032 *	0.319 *	0.0172 *	0.149 *	0.200 *	<0.010 *	0.0158 *	0.160 *	0.0060 *	0.0021 *	0.178 *	-	0.201 *	
Iron (Fe)-Total Lead (Pb)-Total	mg/L mg/L	0.02 0.0001	0.3 0.01	89.0 * 0.0727 *	16.4 * 0.0257 *	2.45 * 0.00150 *	430 * 0.383 *	21.1 * 0.0190 *	160 * 0.118 *	207 * 0.177 *	1.47 * 0.0013 *	17.7 * 0.0134 *	175 * 0.162 *	6.69 * 0.00416 *	1.25 * 0.00085 *	178 * 0.115 *	-	203 * 0.138 *	
Manganese (Mn)-Total	mg/L mg/L	0.0001	0.01	1.29 *	0.998 *	0.695 *	29.6 *	1.12 *	2.78 *	5.50 *	0.247 *	1.89 *	4.12 *	0.826 *	0.617 *	4.37 *	-	4.95 *	
Selenium (Se)-Total	mg/L mg/L	0.0002	0.01	0.0023 *	0.00072 *	<0.00020 *	0.0069 *	0.00034 *	0.0096 *	<0.0020 *	<0.0020 *	0.00800 *	0.0195 *	<0.00020 *	<0.00020 *	0.0099 *	-	0.0098 *	
Uranium (U)-Total	mg/L	0.00002	0.02	0.0134 *	0.0276 *	0.0270 *	0.0256 *	0.00163 *	0.0265 *	0.0300 *	0.195 *	0.00397 *	0.00942 *	0.00520 *	0.00284 *	0.0159 *	-	0.0181 *	
Zinc (Zn)-Total	mg/L	0.006	5	0.401 *	0.0910 *	0.0134 *	1.78 *	0.0736 *	0.667 *	0.974 *	< 0.060 *	0.0691 *	0.631 *	0.0311 *	0.0080 *	0.685 *	-	0.771 *	
Miscellaneous Parameters																			
Turbidity	NTU	0.1	-	1740	424	55.8	>4000	>4000	613	>4000	134	1340	>4000	372	13.5	>4000	927	-	
Routine Potable Water Alkalinity, Total																			
Alkalinity, Total (as CaCO3)	mg/L	5	500	227	296	383	314	282	294	423	508	341	224	294	190	374	512	-	
Bicarbonate (HCO3)	mg/L mg/L	5	-	277	361	467	383	344	359	516	620	417	274	359	231	456	625	-	
Hydroxide (OH)	mg/L	5	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	
Carbonate (CO3)	mg/L	5	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-	
Chloride (Cl)																			
Chloride (Cl)	mg/L	1	250	7.4	6.7	5	40.6	3.4	5.2	1.8	98 *	7.9	5.2	1.9	2.3	9.1	101 *	-	
Fluoride (F)		0.1		0.22	0.2	0.22	0.2	-0.10	0.22	0.14	0.22	-0.10	-0.10	0.2	0.2	0.21	0.21		
Fluoride (F) ICP Cations	mg/L	0.1	-	0.23	0.2	0.22	0.2	< 0.10	0.22	0.14	0.32	<0.10	< 0.10	0.3	0.2	0.21	0.31	-	
Calcium (Ca) Dissolved	mg/L	1	-	73.4	88.8	127	173	89.9	106	110	467 *	140	63.4	84.2	76.2	109	459 *	-	
Magnesium (Mg) Dissolved	mg/L	1	200	28.8	25.7	54.2	53.7	35.8	30.9	41.7	817 *	32.5	14.9	26.1	21.3	35.2	815 *	-	
Potassium (K) Dissolved	mg/L	1	-	4	3.4	6.9	7.2	10.5	2.9	3.4	51 *	4.7	2.3	2.5	3.1	5.5	51 *	-	
Sodium (Na) Dissolved	mg/L	2	300	29.2	15.8	66	44.7	9.4	7.7	7.6	1180 *	16.5	5.4	7.2	8.6	27.5	1160 *	-	
Sulfur (as SO4) Dissolved	mg/L	3	500	112	35.9	263	186	104	95.3	18.3	6240 *	139	18	30.2	95.5	87.7	6400 *	-	
Iron (Fe) & Manganese (Mn) - D		0.02		0.020	0.020	0.002	0.020	0.020	0.020	0.020	0.020	0.020	0.025	0.020	0.020	0.07	0.020		
Iron (Fe)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/I	0.03 0.001	-	<0.030 0.0309	<0.030 0.602	0.082 0.574	<0.030 0.0895	<0.030 0.297	<0.030 0.163	<0.030 0.184	<0.030 0.254	<0.030 0.0057	0.035 0.113	<0.030 0.538	<0.030 0.526	0.07 0.386	<0.030 0.244	-	
Nitrate, Nitrite and Nitrate+Nitr	mg/L •ite-N	0.001	-	0.0309	0.002	0.574	0.0895	0.297	0.105	0.164	0.234	0.0057	0.115	0.338	0.520	0.380	0.244	-	
Nitrate+Nitrite-N	mg/L	0.5		< 0.50	< 0.50	< 0.50	51.3	< 0.50	0.83	< 0.50	< 0.50	7.12	0.67	< 0.50	< 0.50	<0.50	< 0.50	-	
Nitrate-N	mg/L	0.5	10	< 0.50	< 0.50	< 0.50	51.0	< 0.50	0.72	< 0.50	< 0.50	7.1	0.61	< 0.50	< 0.50	< 0.50	< 0.50	-	
Nitrite-N	mg/L	0.05	3.2	< 0.050	< 0.050	< 0.050	0.276	< 0.050	0.11	< 0.050	0.058	< 0.050	0.065	< 0.050	< 0.050	< 0.050	0.08	-	
pH and Conductivity																			
pH	pH	0.1	-	7.46 *	7.28 *	7.19 *	7.51 *	7.59 *	7.66 *	7.49 *	7.39 *	7.24 *	7.33 *	7.37 *	7.52 *	7.58 *	7.42 *	-	
Conductivity (EC) Total Coliform, Ecoli Mcoli Blue &	uS/cm	10	-	651	639	1150	1420	711	721	786	8800	920	443	588	550	834	8800	-	
Escherichia Coli mcoli blue MF	HPC																		
E. Coli	CFU/100mI	2 1	-	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	<1	10	-	-	
Heterotrophic Plate Count																			
Heterotrophic Plate Count	CFU/mL	10	-	>3000	>3000	>3000	>3000	>3000	>3000	>3000	>3000	>3000	-	>3000	>3000	>3000	-	-	
Total Coliforms																			
Total Coliforms	CFU/100mI	L 1	0, no	190	890	OVERGROWN	<1	30	70	40	210	<1	-	OVERGROWN	OVERGROWN	10	-	-	OVI
			OVERGROWN			• •• • • • • • •													
Miscellaneous Biochemical Oxygen Demand	mg/L	2	-	23	6	8	10	26	7	7	5	7	-	12	55	4	_	_	
TDS (Calculated)	mg/L	n/a	1500	391	354	752	921	422	428	437	9160	577	247	329	321	499	9290	-	
Cation - Anion Balance	%	n/a		2.2	3.2	2.1	0.7	1.3	1	2.4	0.1	0.2	-3.9	1.1	1.3	0.6	-1.6	-	
Hardness (as CaCO3)	mg/L	n/a	800	302	328	540	653	372	392	446	4530	483	220	318	278	417	4500	-	
Soils	-																		
Total Available Nitrogen	mg/kg	2.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Total Nitrogen by LECO	%	0.02	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	
Available Ammonium-N	mg/kg	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	mg/kg	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Nitrate+Nitrite-N		2																	
Nitrate+Nitrite-N Nitrate-N Nitrite-N	mg/kg mg/kg	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

* = Result Qualified **Bold**-Exceeds Guidelines

OVERGROWN

-	
-	
-	
-	
-	
_	

--

- ---

Table 4.2.1 Water and Soil Lab Results Grasswood Hydrogeology

		Sample ID ALS ID Date Sampled	DUP 4 L1172891-17 7/4/2012 Water	BH207-CF07 L1171379-2 6/26/2012 Soil	BH208-CF25 L1171379-1 6/28/2012 Soil
Parameter	Units	Detection Limit			
Health and Toxicity Metals					
Total Mercury in Water by CR					
Mercury (Hg)-Total	mg/L	0.00005	-	-	-
Total Metals in Water by CRC Aluminum (Al)-Total		0.01		_	_
Arsenic (As)-Total	mg/L mg/L	0.0002	-	-	-
Barium (Ba)-Total	mg/L mg/L	0.0002	-	-	-
Boron (B)-Total	mg/L	0.02	-	-	-
Cadmium (Cd)-Total	mg/L	0.00002	-	-	-
Chromium (Cr)-Total	mg/L	0.0002	-	-	-
Copper (Cu)-Total	mg/L	0.001	-	-	-
Iron (Fe)-Total	mg/L	0.02	-	-	-
Lead (Pb)-Total	mg/L	0.0001	-	-	-
Manganese (Mn)-Total	mg/L	0.0006	-	-	-
Selenium (Se)-Total Uranium (U)-Total	mg/L mg/L	0.0002 0.00002	-	-	-
Zinc (Zn)-Total	mg/L mg/L	0.006	-	-	-
Miscellaneous Parameters	ing, E	0.000			
Turbidity	NTU	0.1	-	-	-
Routine Potable Water				-	-
Alkalinity, Total					
Alkalinity, Total (as CaCO3)	mg/L	5	-	-	-
Bicarbonate (HCO3)	mg/L	5	-	-	-
Hydroxide (OH)	mg/L	5	-	-	-
Carbonate (CO3)	mg/L	5	-	-	-
Chloride (Cl) Chloride (Cl)	mg/L	1	_	_	_
Fluoride (F)	iiig/L	1	-	-	-
Fluoride (F)	mg/L	0.1	-	-	-
ICP Cations	8				
Calcium (Ca) Dissolved	mg/L	1	-	-	-
Magnesium (Mg) Dissolved	mg/L	1	-	-	-
Potassium (K) Dissolved	mg/L	1	-	-	-
Sodium (Na) Dissolved	mg/L	2	-	-	-
Sulfur (as SO4) Dissolved	mg/L	3	-	-	-
Iron (Fe) & Manganese (Mn) -		0.02			
Iron (Fe)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	0.03 0.001	-	-	-
Nitrate, Nitrite and Nitrate+Nit	-	0.001	-	-	-
Nitrate+Nitrite-N	mg/L	0.5	-	-	-
Nitrate-N	mg/L	0.5	-	-	-
Nitrite-N	mg/L	0.05	-	-	-
pH and Conductivity					
pH	pH	0.1	-	-	-
Conductivity (EC)	uS/cm	10	-	-	-
Fotal Coliform, Ecoli Mcoli Blue &	x HPC			-	-
Escherichia Coli mcoli blue MF E. Coli	CFU/100mL	1	-	_	_
Heterotrophic Plate Count		1	_	-	-
Heterotrophic Plate Count	CFU/mL	10	-	-	-
Total Coliforms	01 0,1112	10			
	CFU/100mL	1			
Total Coliforms	CFU/100mL	1	-	-	-
Miscellaneous	_	-	_	-	-
Biochemical Oxygen Demand	mg/L	2	5	-	-
TDS (Calculated)	mg/L	n/a	-	-	-
Cation - Anion Balance Hardness (as CaCO3)	% mg/L	n/a n/a	-	-	-
Soils	mg/L	11/ a	-	-	-
Total Available Nitrogen	mg/kg	2.2	-	5.2	4.6
Total Nitrogen by LECO	%	0.02	-	0.051	0.033
Available Ammonium-N	mg/kg	1	-	5.2	4.6
Nitrate+Nitrite-N	mg/kg	2	-	<2.0	<2.0
Nitrate-N	mg/kg	2	-	<2.0	<2.0
Nitrite-N	mg/kg	0.4		< 0.40	< 0.40

* = Result Qualified **Bold**-Exceeds Guidelines

File S1607.7

Table 6.0-2Soil ClassificationGrasswood Hydrogeology

Borehole	Visual Soil Classification	Laboratory Tests		Field Tests	Suitability	
				Depth to		
	Upper 3 m	USC	USDA	Water (m)	Soil Texture	Depth to Groundwater
		Classification	Classification			
101	Sand fine grained, silty, clay layer from 1.5 to 2.0 m	SM / CH	Sandy Loam*	>2**	Further Testing	
102	Sand, fine grained, silty		Sandy Loam	>2**	Suitable	
103	Sand over silt at 1.8 m		Sandy Loam*	>2**	Suitable	
104	Sand to 1.4 m over silty clay to 4.5 m	SM / CL	Sandy Loam*	6.8	Further Testing	
105	Clay, silty to 1.2 m over sand		Silty Loam	>2**	Suitable	
106	Sand to 2.2 m over clay		Sandy Loam*	>2**	Suitable	
107	Sand, fine grained silty		Sandy Loam*	>2**	Suitable	
108	Sand, fine grained silty over clay at 2.7 to 3.0 m	SM	Sandy Loam*	<2**	Suitable	Potential Limitation
109	Sand, fine, silty to 2.4 m over clay		Sandy Loam*	>2**	Suitable	
110	Clay with sand layer to 3 m		Clay Loam	>2**	Further Testing	
111	Sand, some silt to 2. m over clay to 3.5 m		Sandy Loam	<2**	Suitable	Potential Limitation
112	Sand to 2.2 m over clay		Sandy Loam*	>2**	Suitable	
113	Clay to 1.5 m over sand to 2.6 m		Loam	>2**	Suitable	
114	Sand to 1.8 m over clay		Silty Clay Loam*	<2**	Further Testing	Potential Limitation
115	Sand to 1.4 m over clay		Silty Clay Loam*	>2**	Further Testing	
116	Sand to 0.8 m over clay		Silty Clay Loam*	<2**	Further Testing	Potential Limitation
117	Sand to 2 m over clay		Sandy Loam*	>2**	Suitable	
118	Sand to 0.9 m over clay		Silty Clay Loam*	>2**	Further Testing	
119	Sand, fine grained silty		Sandy Loam*	>2**	Suitable	
201	Sand, fine to med	SM	Sandy Loam	2.0	Suitable	
202	Sand, fine to med	SM	Sandy Loam*	2.1	Suitable	
203	Clay to 1.2 over sand	SC	Clay Loam	2.1	Suitable	
203	Fine to medium grained sand	SM	Sandy Loam*	2.1	Suitable	
204	Sand, fine to med.	SM	Silty Loam	2.3	Suitable	
205	Sand to 2.6 m over clay	SM	Sandy Loam*	4.1	Suitable	
206	Sand, fine to med	SM	Sandy Loam*	2.4	Suitable	
207	Sand to 1.2m over clay to 3 m	SM	Sandy Loam*	1.5	Further Testing	Limitation
208	Sand, fine to med		Sandy Loam*	2.7	Suitable	
209	Sand, fine to med	SM	, Sandy Loam*	>3.0	Suitable	
210	Sand, fine to med	SM	, Sandy Loam*	4.2	Suitable	
211	Sand, fine to med	SM	, Sandy Loam*	1.3	Suitable	Limitation
212	Sand to 2.1 m over 1 m of clay	SM	, Sandy Loam*	2.4	Suitable	
213	, Sand to 1.5 m over clay	CL	, Silty Clay Loam	3.6	Further Testing	

Notes:

USC and USDA Classifications without (*) indicate testing confirmed via field, seive or hydrometer testing

Suitablity by soil texture conisders most restrictive soil in upper 2 m.

Suitability for groundwater based on 1.5m depth to groundwater below tile plus 0.5 m tile burial depth for total of 2.0 m depth to groundwater Soil Texture Suitability based on Appendix 15 Soil Tests- Saskatchewan OnSite Waste Water Disposal Guideline 2009

* Soil Textures based on visual classifications, and assume all fines being silt, or sandy loam where visual classification as sand

**Values based on interpolated groundwater elevation data acquired from Drawing 15

engineering science technology

Appendix A

8450 Cole Parkway • Shawnee, KS 66227 • Phone: 913-422-0707 • Fax: 913-422-0808 E-mail: onsite@biomicrobics.com • www.biomicrobics.com • 800-753-FAST (3278)

FAST® Wastewater Treatment Systems Data Catalog

1. Residential Applications (MicroFAST®/ModularFAST®)

- a. Small Units (500 1500 GPD)
 - i. NSF Std. 40 Certification Executive Summary
 - ii. Florida OWNRS Demo Project Phase I & II
 - iii. Buzzard's Bay Massachusetts Alternative Septic System Test Center
- b. Large Units (3000+)

.9

- i. Halifax, Massachusetts
- ii. Sandwich, Massachusetts
- iii. Sherborn, Massachusetts
- iv. Sudbury, Massachusetts

2. High Strength Applications (HighStrengthFAST®/ModularFAST®)

- a. Coonamesett Inn, Coonamesett, Massachusetts
- b. Fuego, Washington
- c. Littleton, Massachusetts
- d. Mashpee 99 Restaurant, Mashpee, Massachusetts
- e. Plymouth, Massachusetts
- f. Richmond, Rhode Island

3. RetroFAST® Data – EPA Environmental Technology Verification (ETV)

- a. ETV Joint Verification Statement
- b. RetroFAST® Data Summary

Ann Arbor • Atlanta • Los Angeles • Sacramento • Washington D.C. • Brussels

EXECUTIVE SUMMARY

Testing of the Bio-Microbics, Inc. (formerly Scienco/FAST[®]) Single Home FAST Treatment Plant Model 23-001-750 was conducted under the provisions of NSF Standard 40 for Individual Aerobic Wastewater Treatment Plants (July 1990). NSF Standard 40 was developed by the NSF Joint Committee on Wastewater Technology.

The performance evaluation was conducted at the NSF Wastewater Technology Test Facility in Chelsea, Michigan, using wastewater diverted from the Chelsea municipal wastewater collection system. The evaluation consisted of six months of testing, during which a seven week stress test was conducted. The evaluation consisted of three weeks of dosing without sampling to allow for plant start-up, sixteen weeks of dosing at design flow, seven weeks of stress test and five weeks of dosing at design flow. Sampling started in the fall and continued through the winter and into spring, covering a full range of operating temperatures.

Standard 40, in Section H. (3) of Appendix A, provides for exclusion of up to ten percent of the effluent sample days, not to exceed one during stress testing, in completing the pass/fail determination. No sample days were excluded in this evaluation. Over the course of the evaluation, the average effluent BOD₅ was 9 mg/L, ranging between <5 and 24 mg/L, and the average effluent suspended solids was 7 mg/L, ranging between <5 and 27 mg/L. The pH ranged from 7.5 to 8.2.

The Single Home FAST Treatment Plant Model 23-011-750 produced an effluent that successfully met the performance requirements established by NSF Standard 40 for Class I effluent:

The maximum arithmetic mean of seven consecutive sample days was 14 mg/L for BOD₅ and 12 mg/L for suspended solids, both well below the allowed maximum of 45 mg/L. The maximum arithmetic mean of 30 consecutive sample days was 12 mg/L for BOD₅ and 8 mg/L for suspended solids, both well below the allowed maximum of 30 mg/L. Removal rates ranged from 92 to 95 percent for BOD₅ and 95 to 97 percent for suspended solids, consistently above the requirement of 85 percent.

The effluent pH during the entire evaluation ranged between 7.5 and 8.2, within the required range of 6.0 to 9.0. The plant also met the requirements for noise levels (less than 60 dbA at a distance of 20 feet) and color, threshold odor, oily film and foam.

Prepared 8/28/96

P.O. Box 130140 Ann Arbor, Michigan 48113-0140 USA 313-769-8010 1-800-NMSF-MARK Fax 313-769-0109 E-Mail: info@nsf.org Web: <u>http://www.nsf.org</u>

Ann Arbor • Atlanta • Los Angeles • Sacramento • Washington D.C. • Brussels

NITROGEN SERIES TEST RESULTS

(All results reported as mg/L as N)

Sample Date	Ammonia - N		Nitrate - N		Total Kjeldahl - N	
	Influent	Effluent	Influent	Effluent	Influent	Effluent
9/17	22	3.3	< 0.5	0.7	32	6.1
9/20	29	2.2	0.8	4.1	36	4.7
9/24	34	4.0	< 0.5	4.6	39	6.2
9/27	25	3.5	< 0.5	3.9	33	5.4
10/1	28	4.7	< 0.5	1.5	35	8.0
10/4	21	6.0	<0.5	1.4	31	9.4

Plant: Bio-Microbics, Inc. (formerly Scienco/FAST[®]) Model 23-001-0750

Prepared 8/26/96

P.O. Box 130140 Ann Arbor, Michigan 48113-0140 USA 313-769-8010 1-800-NMSF-MARK Fax 313-769-0109 E-Mail: info@nsf.org Web: <u>http://www.nsf.org</u>

Ann Arbor • Atlanta • Los Angeles • Sacramento • Washington D.C. • Brussels

OFFICIAL LISTING

NSF International Certifies that the products appearing on this Listing conform to the requirements of NSF/ANSI Standard 40 - Residential Wastewater Treatment Systems

This is the Official Listing recorded on April 25, 2005.

BIO-MICROBICS, INC. 8450 COLE PARKWAY SHAWNEE, KS 66227 800-753-FAST 913-422-0707

Facility : SHAWNEE, KS

Model Number	Rated Capacity Gallons/Day	Classification
MicroFast 0.5[1]	500	Class I
MicroFast 0.75[2]	750	Class I
MicroFast 0.9[3]	900	Class I
MicroFast 1.5[4]	1500	Class I

Beginning with serial number MCF2265B
 Beginning with serial number MCF4000B
 Beginning with serial number MCF3026B
 Beginning with serial number MCF6006B

NOTE: Units accepted with either concrete or fiberglass tanks.

This company may sell products complying with all applicable requirements for Certification nationally and internationally, but has advised NSF of authorized representatives physically located in the following:

Alaska	Arizona	British Columbia	California	Colorado
Florida	Georgia	Hawaii	Idaho	Illinois
Iowa	Kansas	Maryland	Massachusetts	Michigan
Minnesota	Missouri	Nevada	New Mexico	New York
North Carolina	Nova Scotia	Ohio	Oklahoma	Ontario
Pennsylvania	South Carolina	Texas	Vermont	Virginia
Pennsylvania Washinghton	South Carolina Wisconsin	Texas	Vermont	Virginia

Contact the Listed company directly for further product information and availability in your area.

Onsite Wastewater Nutrient Reduction Systems (OWNRS) For Nutrient Sensitive Environments

Damann L. Anderson* Mark B. Tyl Richard J. Otis Timothy G. Mayer Kevin M. Sherman

ABSTRACT

Negative impacts to the Florida Keys coral reef ecology have been documented in recent years, and water quality degradation from nutrient overloading is a suspected cause. To protect the waters of the Florida Keys from further degradation, the Florida Keys National Marine Sanctuary (FKNMS) was established by the federal government in 1990. In 1993 the U.S. Environmental Protection Agency (EPA) identified domestic wastewater as a major source of nutrient loading to FKNMS waters. Many dwellings and commercial establishments in the Keys use onsite wastewater treatment systems (OWTS), so the Florida Keys Onsite Wastewater Nutrient Reduction Systems (OWNRS) Demonstration Project was initiated in 1995 to demonstrate the use of OWTS which could significantly improve treatment and reduce the concentrations of nutrients discharged to the near-shore environment of the Keys.

To meet this objective, a unique test facility was designed and constructed to evaluate various OWNRS processes simultaneously, under controlled conditions, using a common wastewater source. Five principle wastewater treatment process streams were operated concurrently at the test facility, with several unit processes in each stream. Unit processes evaluated included attached growth and suspended growth biological processes (both aerobic and anaerobic), physical/chemical processes (adsorption, precipitation, ion exchange) and natural systems utilizing drip irrigation for plant uptake and evapotranspiration. Influent and effluent quality were monitored monthly with 24-hour flow-composite samples. Results after the first year of operation indicate that OWNRS effluent concentrations of 5 mg/L CBOD₅, 5 mg/L TSS, 10 mg/L total nitrogen, and 1 mg/L total phosphorus are achievable without chemical addition using combinations of the processes tested. Although excellent treatment was achieved with OWNRS, significant additional construction, operation, and maintenance was required for these systems in comparison with conventional OWTS.

Keywords: Onsite wastewater treatment, Nutrient removal, Nitrogen removal, Phosphorus removal, Advanced wastewater treatment

INTRODUCTION

The Florida Keys are an environmentally sensitive chain of islands extending from the southern tip of Florida southwestward to Key West and the Dry Tortugas. The clear waters surrounding this area contain the only living coral reefs in the continental United States. Over 80,000 people make their homes in the Florida Keys and more than 3 million tourists visit the Keys annually.

^{*}Damann L. Anderson, Mark B. Tyl, Ayres Associates, 3901 Coconut Palm Drive, Tampa, FL, 33619; Richard J. Otis, Ayres Associates, 2445 Darwin Rd., Madison, WI, 53704; Timothy G. Mayer, Kevin M. Sherman, Florida Dept. of Health, Onsite Sewage Program, 1317 Winewood Blvd., Tallahassee, FL, 32399

Background

In 1990, the United States Congress recognized the national and international significance of resources in the Florida Keys with the passage of The Florida Keys National Marine Sanctuary and Protection Act (Public Law 101-605). The sanctuary established by this legislation consists of approximately 9,500 km² of coastal and oceanic waters and the submerged land beneath them. The shoreward boundary of the sanctuary is the mean high-water mark.

Under the sanctuary designation, the National Oceanic and Atmospheric Administration (NOAA) is charged with developing a comprehensive management plan and implementation regulations. The U.S. Environmental Protection Agency (EPA), in conjunction with the State of Florida and NOAA, must develop and implement a water quality protection program.

The water quality protection program has identified nutrient loading from wastewater sources as one of the major water quality concerns in the Keys. Onsite wastewater treatment systems (OWTS) have been targeted as one of the primary wastewater sources of nitrogen and phosphorus. The Water Quality Protection Program Report (Continental Shelf Associates, 1993) to the EPA documented the need for a demonstration of nutrient-reducing OWTS in the Florida Keys. The Florida Department of Health initiated the Florida Keys Onsite Wastewater Nutrient Reduction System (OWNRS) Demonstration Project in response to this need.

Project Objectives

The Florida Keys OWNRS Demonstration Project was designed to demonstrate the capability and use of alternative OWTS technologies for the Florida Keys. Wastewater treatment processes which provide a level of treatment superior to conventional OWTS were tested to evaluate their potential to reduce organic, solids, and nutrient loading to near-shore waters of the Keys. An additional goal of the project was to determine if Florida advanced wastewater treatment (AWT) standards of 5 milligrams per liter (mg/L) for Carbonaceous Biological Oxygen Demand (CBOD) and Total Suspended Solids (TSS), 3 mg/L for Total Nitrogen, and 1 mg/L for Total Phosphorus, are feasible for OWTS.

MATERIALS AND METHODS

Central Test Facility

A central test facility was constructed at a minimum security correctional institution in the Florida Keys to test various processes for onsite wastewater treatment removal. The central test facility was designed to allow comparative testing of numerous onsite wastewater treatment processes simultaneously, under controlled conditions, with a common wastewater source. Use of a common source eliminated the difficulty of making valid comparisons of technology performance based on a limited number of installations with widely varying wastewater characteristics. The test facility allows accurate monitoring of influent wastewater quality and flow, and the capability for flow-composited effluent sampling to determine treatment performance.

The test facility was initially set up to evaluate five principle wastewater treatment process streams. Electronically activated dose systems provide each of the process streams with influent wastewater, diverted from the correctional institution's wastewater collection systems. The dosing schedule is shown in Figure 1 and mimics the typical wastewater flow from a home, with peaks in the morning and early evening. Under normal operating conditions, each of the treatment streams receives 200 gallons per day. The facility is designed so this volume can be adjusted for stress testing and other special purpose research. The central test facility was activated in October of 1996.

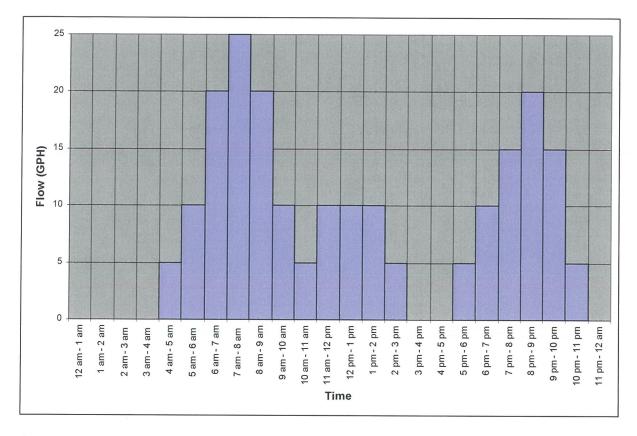


Figure 1: Daily Dose Schedule to Treatment Systems (5 gallons per dose)

Treatment Processes

The principle treatment technologies currently under evaluation are physical, chemical, and aerobic and anaerobic biological treatment processes. One "passive" technology stream and four "active" technology process streams are currently under evaluation. A description of the five principle process streams follows. Figure 2 provides a schematic of the test facility and process streams currently in operation.

Process Stream 1 consists of a septic tank (ST-1) followed by a recirculating sand filter (RSF) and an anoxic bio-filter (ABF). Effluent from the system is discharged to an unlined drip irrigation bed. Treatment occurs through digestion and settling in the septic tank and physical, chemical, and attached growth aerobic biological processes in the RSF. Adsorption by the RSF media removes limited quantities of phosphorus. The nitrified RSF effluent is mixed with anoxic septic tank effluent in the recirculation chamber (RC) to encourage denitrification. The effluent also undergoes further nutrient reduction in an anoxic bio-filter and by plant uptake in the drip bed as well as adsorption on the drip field media.

Process Stream 2 is a relatively passive technology consisting of a septic tank (ST-2) with effluent discharged to a lined drip irrigation field. A commercially available subsurface drip irrigation (SDI) system by Aztex[™] Products is used for effluent distribution to the root zone. This process stream represents the most "low tech" of the systems. Reduction of nutrients and other parameters is accomplished by preliminary digestion and settling in the septic tank with additional

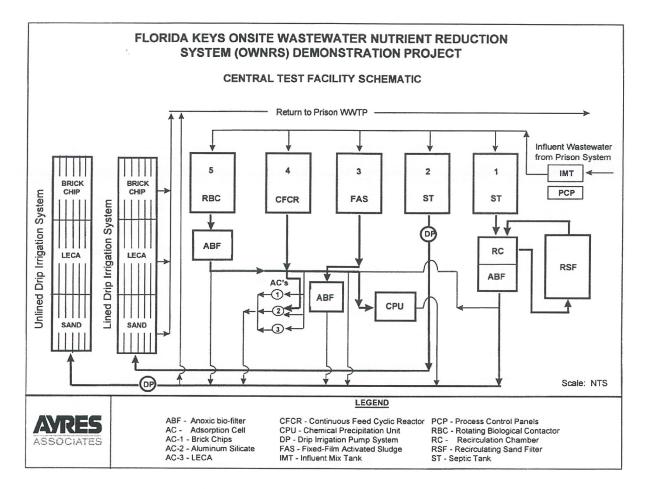


Figure 2: Central Test Facility Schematic

physical, chemical, and biological treatment processes occurring in the lined bed underlying the drip field and by plant uptake. The lined bed contains a one foot thickness of saturated media under 1.5 feet of unsaturated media. The effluent undergoes nitrification in the upper unsaturated (aerobic) portion of the drip bed and limited denitrification in the saturated (anaerobic) lower portion of the drip bed. Three treatment media (crushed red brick, silica sand, and an expanded clay aggregate from Norway, commercially known as LECATM) underlie distinct zones of the drip field. Two of these, the bricks and LECA, were selected for their phosphorus adsorption potential. Because these media beds have been built over an impermeable liner, the program includes an assessment of the effectiveness of evapotranspiration in reducing effluent volumes.

The principle treatment unit in *process stream 3* is a proprietary unit known as the Bio-Microbics FAST[™] aerobic unit. This unit uses fixed-film activated sludge (FAS) treatment. The treatment is a combination suspended growth and attached growth aerobic biological process. This system provides nitrification of the effluent before discharge, and also provides denitrification by mixing anaerobic conditions that favor the growth of denitrifying microorganisms and conversion of nitrate to nitrous oxide or nitrogen gas. Additional processes would be required for phosphorus removal following this system.

Process stream 4 consists of proprietary treatment unit known as the AES BESTEP- IDEATM system. This system is a suspended growth biological treatment process that operates as a continuous feed cyclic reactor (CFCR). The process is similar to a sequencing batch reactor (SBR), but is unique in that it allows continuous flow while using only one process tank. Aeration to the tank is cyclical, which causes alternating aerobic and anaerobic conditions. This fluctuating environment results in nitrification followed by denitrification and also luxury uptake of phosphorus by the activated sludge biomass.

Process stream 5 consists of a proprietary treatment unit known as the Klargester Biodisc[™]. It is a rotating biological contactor (RBC), followed by an anoxic bio-filter (ABF). The RBC is an attached growth, aerobic biological treatment process that provides internal recycle for nitrification and denitrification. It produces a nitrified effluent that then undergoes further denitrification in the ABF. Additional processes would be required for phosphorus removal following this system.

Additional unit processes are available for testing at the facility. These include chemical precipitation, supplemental carbon addition for denitrification, and additional phosphorus adsorption media. The test facility was designed so that the effluent from the principle treatment process streams described above can be routed to any of these additional processes for further treatment and evaluation. These additional processes are currently under evaluation and are not included in this paper. Effluents from the various process streams are discharged to a sump tank after water quality sampling and returned to the correctional institution's wastewater treatment plant.

Treatment Performance Monitoring

Twenty-four hour flow composited samples were collected from the influent mix tank and from each of the five treatment process effluents from November 1996 through August 1997. Samples were analyzed according to Standard Methods (APHA, 1992) for biochemical oxygen demand (BOD₅), carbonaceous biochemical oxygen demand (CBOD₅), total suspended solids (TSS), total kjeldahl nitrogen (TKN), nitrate + nitrite-nitrogen (NO₂NO₃-N), and total phosphorus (TP). Total nitrogen (TN) was obtained by summation.

RESULTS

Results of the water quality analyses for the influent and five process stream effluents are provided in Table 1. For the lined bed drip irrigation system (Process Stream 2), only the results of the crushed brick media (LBRICK) are reported here.

Influent wastewater quality was typical of that reported in the literature for domestic wastewater (Metcalf and Eddy, 1991) with mean CBOD₅, TSS, TN, and TP values of 137.8, 117.5, 38.4, and 8.4 mg/L, respectively. Significant variations about these mean values were measured over the 12 sampling events, also typical of domestic wastewater from individual homes.

Effluent quality for all treatment processes was excellent in terms of traditional wastewater treatment parameters, CBOD₅, and TSS.

 $CBOD_5$: All five process streams met the AWT CBOD₅ effluent standard of 5 mg/L. Figure 3 shows the 95% confidence intervals about the mean for the five processes. These data illustrate the stability of fixed-film attached growth biological processes such as the RSF and RBC.

TSS: Only the CFR and the RBC systems did not meet the AWT effluent TSS standard of 5 mg/L, but they were within 2 mg/L of the standard. Figure 4 shows the 95% confidence intervals for TSS. These data indicate the stability of biological filter type processes such as the RSF for TSS removal. The crushed brick media also indicated stable TSS removals later in the study period, once the fine media particles stabilized and grass growth took hold.

Effluent quality for the nutrients, nitrogen and phosphorus, showed significantly more variation between processes, and typically did not meet AWT effluent standards.

Parameter	Statistic	Influent	System 1	System 2	System 3	System 4	System 5
		(IMT)	(RSF-ABF)	(LBRICK)	(FAS)	(CFCR)	(RBC-ABF)
	mean	170.90	2.27	4.17	5.58	4.16	2.42
	Std. Dev.	73.85	2.51	6.29	3.90	5.45	1.38
BOD₅	min	62.00	1.00	1.00	1.00	1.00	1.00
	max	299.00	9.70	21.30	14.00	17.20	5.00
	n	10	12	11	11	8	11
	mean	137.80	1.50	2.81	2.70	3.19	1.68
	Std. Dev.	60.13	0.90	4.04	3.11	5.18	1.24
CBOD₅	min	59.00	1.00	1.00	1.00	1.00	1.00
	max	220.00	4.00	14.40	9.01	15.90	5.00
-	n	10	12	11	11	8	11
	mean	117.50	2.25	4.09	4.63	6.85	5.75
	Std. Dev.	92.09	1.76	3.83	3.93	6.62	4.47
TSS	min	17.00	1.00	1.00	1.00	2.00	1.00
	max	345.00	6.00	11.00	14.00	20.00	16.00
	n	12	12	11	12	10	12
	mean	38.58	1.01	1.75	1.55	1.16	2.75
	Std. Dev.	10.67	1.44	2.10	0.82	0.52	2.62
TKN	min	19.20	0.26	0.34	0.49	0.56	0.42
	max	62.50	5.30	8.19	3.40,	2.20	7.40
	n	12	11	12	12	9	11
	mean	0.03	21.09	18.3.6	9.42	14.30	9.77
	Std. Dev.	0.02	6.76	10.56	4.06	6.49	3.69
NO2NO3-N	min	0.01	14.00	1.60	3.90	2.54	3.60
	max	0.05	35.20	36.60	19.70	23.00	17.00
	n	10	11	11	12	9	11
	mean	38.61	20.76	20.24	10.97	15.46	12.52
	Std. Dev.	10.67	5.61	11.64	4.05	6.60	5.98
TN	min	19.25	14.46	3.00	4.55	3.53	4.05
	max	62.55	30.23	44.79	20.19	24.20	23.00
	n	12	10	11	12	9	11
	mean	8.39	1.76	0.60	5.38	6.24	4.67
	Std. Dev.	5.79	0.48	0.23	1.44	1.59	1.05
TP	min	4.32	0.92	0.34	3.22	4.80	2.50
	max	26.00	2.40	1.20	8.70	9.90	5.90
	n	12	10	11	12	10	12

Table 1: Summary of Influent and Effluent Water Quality Data

R.

3

Nitrogen: None of the five process streams met the AWT nitrogen standard of 3 mg/L. The FAS and RBC-ABF systems performed best for nitrogen removal, with mean effluent TN values of 11.0 and 12.5 mg/L, respectively. Figure 5 shows the 95% confidence intervals for TN.

These results are excellent considering they were obtained without supplemental carbon addition to enhance denitrification. In fact, the RBC-ABF effluent was not significantly different from the RBC effluent alone, indicating insufficient residual carbon for denitrification in the ABF tank following the RBC.

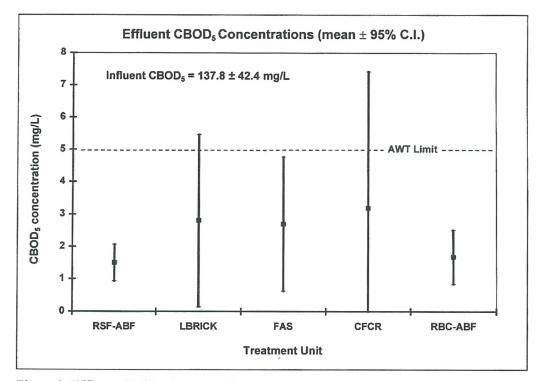


Figure 3: Effluent CBOD₅ Concentrations (mean ± 95% C.I.)

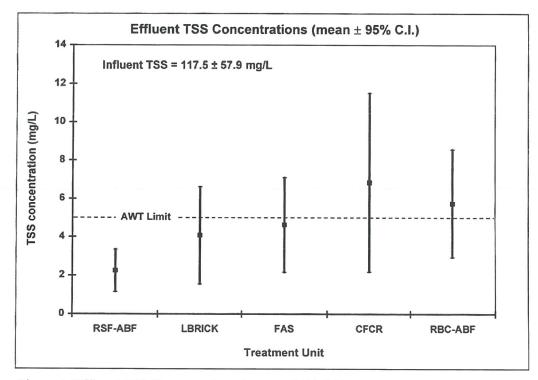


Figure 4: Effluent TSS Concentrations (mean ± 95% C.I.)

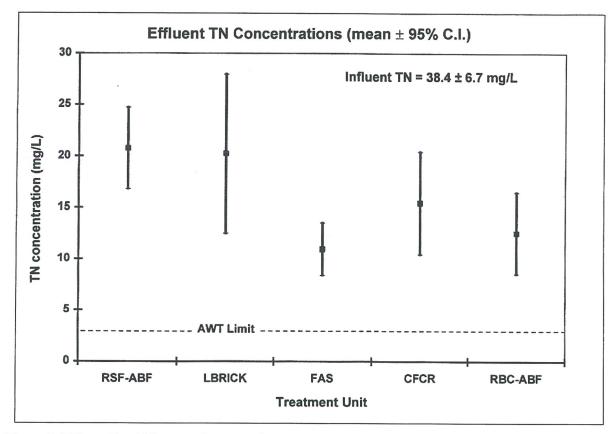


Figure 5: Effluent Total Nitrogen Concentrations (mean \pm 95% C.I.)

Supplemental carbon addition is currently being evaluated at the Keys test facility, and preliminary results indicate that an effluent TN value of 5 mg/L may be achievable by adding carbon to an ABF unit following the FAS or RBC.

Phosphorus: Only the lined drip irrigation system with crushed brick (LBRICK) media met the AWT effluent standard for phosphorus. The LBRICK and RSF-ABF systems both provided excellent TP removals with mean effluent TP values of 0.60 and 1.8 mg/L, respectively. Figure 6 shows the 95% confidence intervals for TP. These data suggest that adsorption of phosphorus on the RSF sand and drip field crushed brick media are also the most stable phosphorus removal mechanisms tested. It remains to be seen, however, how long these removal efficiencies will last. Once the media adsorption sites reach capacity, breakthrough of phosphorus at higher concentrations may occur.

SUMMARY AND CONCLUSIONS

A field evaluation of several onsite wastewater nutrient reduction systems (OWNRS) was conducted to evaluate the potential for improved treatment effectiveness of onsite wastewater treatment systems (OWTS) in the Florida Keys. Results indicated that the systems tested provided excellent treatment performance (CBOD₅ and TSS <5 mg/L), but no individual system was capable of meeting the Florida advanced waste treatment (AWT) effluent standards of 5 mg/L CBOD₅, 5 mg/L TSS, 3 mg/L TN, and 1 mg/L of TP.

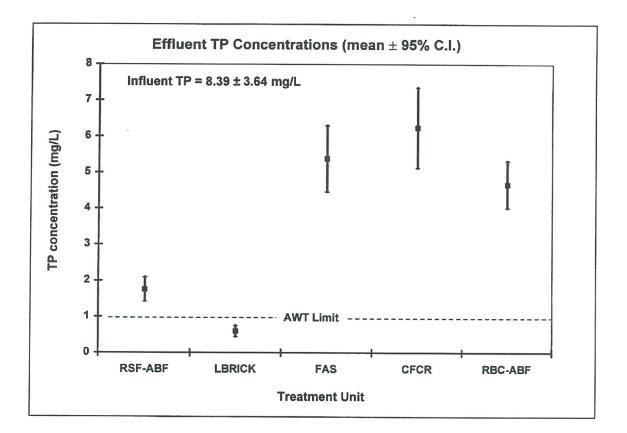


Figure 6: Effluent Total Phosphorus- Concentrations (mean ± 95% C.I.)

It appeared that a combination of processes, such as an aerobic biological treatment unit followed by an anoxic bio-filter (ABF) with supplemental carbon addition, discharging to an engineered media drip irrigation bed could meet the AWT standards for CBOD₅, TSS, and TP and come very close to the standard for TN. The duration of the TP removals by the drip irrigation bed is unknown; however, continued monitoring of these systems is recommended to address longevity issues and solids handling requirements. Based on the evaluation conducted to date, following conclusions are drawn:

- AWT effluent standards for CBOD₅, TSS, and TP can be consistently met with combinations of the technologies tested;
- TN reductions of >70% are achievable without supplemental carbon addition and 90% with carbon addition;
- Continued monitoring of the OWNRS are required to quantify phosphorus removal duration and treatment performance longevity, solids handling requirements, and maintenance requirements;
- Construction of the OWNRS and operation for one year has indicated that OWNRS will require considerably greater capital, operation and maintenance expenditures in comparison to conventional OWTS.

ACKNOWLEDGEMENTS

This project was funded by the Florida Department of Health (Contract #LP988) under a grant from the US Environmental Protection Agency (Cooperative Agreement #X994394-93-0), and this financial support is acknowledged. The Florida Department of Corrections, and specifically the staff of the Big Pine Key Road Prison, are gratefully acknowledged for the cooperation and assistance on the OWNRS Demonstration Project. Finally, the time and material provided by the numerous equipment manufacturers made this study possible, and their support is acknowledged.

REFERENCES

- 1. APHA, 1992. Standard Methods for the Examination of Water and Wastewater. 18th ed., American Public Health Association, Washington DC.
- Continental Shelf Associates, Inc., Batelle Ocean Services, Lindahl, Browning, Ferrari & Hellstrom, Inc., Batelle Pacific Northwest Division and Batelle Seattle Research Center, 1993. Water Quality Protection Program, Florida Keys National Marine Sanctuary, Phase II Report. Report to the US Environmental Protection Agency, Oceans and Coastal Protection Division under Contract 68-C2-0134.
- 3. Metcalf & Eddy, Inc. Wastewater Engineering: Treatment Disposal, and Reuse. 3rd ed., McGraw-Hill, New York, 1991.

FLORIDA OWNRS PROJECT PHASE 1 - TEST DATA

PARAMETER	R UNITS	S SAMPLE	E DATES	S										AVG	% RED
		11/20/96	11/20/96 12/18/96 1/29/97	1/29/97	2/26/97	4/2/97	4/23/97	5/8/97	5/21/97	5/21/97 ² 5/29/97	6/11/97	7/17/97	8/28/97		
BOD (5-Day@20°C)	C)							-							
INFLUENT	ENT mg/L	137.00	17	299.00	139.00	170.00	210.00	230.00	62.00	240.00	100.00	150.00	100.00	165.42	
FAST	mg/L	3.26	7.75		6.00	4.30	9.00	5.70	2.60	14.00		1.00	1.00	5.62	96.6
FAST-ABF	ABF mg/L	NO DATA	NO DATA	10.00	10.00	2.20	1.40	1.70	2.70	1.00	1.40	1.00	1.00	3.24	
BOD (Carbonaceous)	ous)														
INFLUENT	ENT mg/L	176.00	136.00	215.00	183.00	150.00	200.00	220.00	59.00	130.00	67.00	130.00	71.00	144.75	
FAST	mg/L	2.48	8.85	9.01	6.00	1.20	1.40	1.00	1.00	1.00	1.00	1.00	1.00	2.91	98.0
FAST-ABF	ABF mg/L	NO DATA	NO DATA	16.10	10.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	3.41	97.6
Ammonia Nitrogen	en														
INFLUENT	ENT mg/L N	18.90	34.90	50.80	26.80	23.00	37.00	29.00	26.00	36.00	30.00	27.00	27.00	30.53	
FAST	mg/L N	0.32	1.24	1.73	0.58	0.75	1.40	0.10	0.07	1.90	0:30	0.15	0.04	0.72	97.7
FAST-ABF	ABF mg/L N	NO DATA	NO DATA	2.50	0.34	0.61	0.37	0.29	0.67	0.63	0.04	NO DATA	NO DATA	0.68	97.8
Nitrate-Nitrite Nitrogen	rogen														
INFLUENT	ENT mg/L N	0.05		0.05	0.05	0.04	0.02	0.02	0.01	0.01	0.04	NO DATA	NO DATA	0.03	
FAST		9.23	9.39	8.47	19.70	9.20	7.00	3.90	12.00	11.00	9.40	9.80	4.00	9.42	NA
FAST-ABF	ABF mg/L N	NO DATA	NO DATA	18.81	19.00	8.60	6.40	2.40	7.40	11.00	10.00	10.00	2.40	9.60	AN
Total Kjeldahl Nitrogen	trogen														
INFLUENT	ENT mg/L N	19.20	46.90	62.50	37.40	32.00	46.00	39.00	33.00	44.00	36.00	33.00	32.00	38.42	
FAST	mg/L N	1.23	1.77	1.82	0.49	1.90	2.50	1.10	1.00	3.40	1.30	1.50	0.55	1.55	96.0
FAST-ABF	ABF mg/L N	NO DATA	NO DATA	2.39	0.64	1.60	1.10	1.10	1.60	1.60	0.83	1.10	0.81	1.28	96.7
Total Nitrogen(TKN+Nitrates)	I+Nitrates)														
INFLUENT	ENT mg/L N	19.25		62.55	37.45	32.04	46.02	39.02	33.01	44.01	36.04	NO DATA	NO DATA	39.63	
FAST		10.46	11.16	10.29	20.19	11.10	9.50	5.00	13.00	14.40	10.70	11.30	4.55	10.97	72.3
FAST-ABF	ABF mg/L N	NO DATA	NO DATA	21.20	19.64	10.20	7.50	3.50	9.00	12.60	10.83	11.10	3.21	10.88	72.6
Total Phosphorus	S														
INFLUENT	ENT mg/L P	4.32	7.09	11.00	7.07	6.60	7.80	7.10	5.80	26.00	5.80	7.10	5.00	8.39	
FAST		3.22	4.21	5.19	5.64	5.80	6.40	6.10	5.30	8.70	5.90	3.70	4.40	5.38	35.9
FAST-ABF	ABF mg/L P	NO DATA	NO DATA	4.52	5.22	5.60	5.60	5.40	5.30	5.80	7.10	4.50	4.20	5.32	36.5
Total Suspended Solids	Solids														
INFLUENT	ENT mg/L	60.09		345.00	70.00	17.00	203.00	170.00	162.00	80.00	123.00	74.00	20.00	117.50	
FAST		4.00		10.00	4.00	1.00	3.00	5.50	1.00	2.00	4.00	6.00	1.00	4.63	96.1
FAST-ABF	ABF mg/L	NO DATA	NO DATA	4.00	4.00	1.00	1.00	2.50	1.00	1.00	1.00	3.00	1.00	1.95	98.3

sample collected following simulated vacation stress
 sample collected following simulated wash day stress

FLORIDA OWNRS PROJECT PHASE 2 - TEST DATA

FARAIME I ER	ER	S INN IS	SAMPLE	LE UA IES											AVG	% RED
			8/19/98	9/22/98	1/18/99	2/16/99	3/23/99	4/22/99	MAY	6/22/99	7/27/99	8/31/99	9/28/99	10/21/99		
BOD (5-Day@20°C))20°C)															
2	INFLUENT	mg/L	160.00	12	NO DATA	120.00	140.00	56.00	z	160.00	160.00	160.00	110.00	150.00	133.60	
Ĺ	FAST	mg/L	NO DATA		NO DATA	4.50	NO DATA	2.50	0	NO DATA	4.20	3.70	1.80	5.60	3.67	97.3
Ê	FAST-ABF	mg/L	NO DATA	13.00		NO DATA	NO DATA	NO DATA		NO DATA	NO DATA	NO DATA	N	Ž	13.00	
BOD (Carbonaceous)	aceous)								۵							
Z	INFLUENT	mg/L	150.00	91.00	190.00	90.06	88.00	39.00	A	100.00	120.00	120.00	90.00	140.00	110.73	
E/	FAST	mg/L	1.00	1.70	1.00	2.00		1.00	⊢	1.00	1.00	1.10			1.16	686
E/	FAST-ABF	mg/L	NO DATA	NO DATA	3.80	1.50	1.00	1.00	A	1.00	1.00	6.70	(°)		5.89	PD 04
Ammonia Nitrogen	rogen														000	
Z	INFLUENT	mg/L N	NO DATA	26.00	NO DATA	37.00	NO DATA	22.00	ш	53.00	35.00	47.00	30.00	40.00	36.25	
E/	FAST	mg/L N	NO DATA	0.11	NO DATA	0.28		0.28	0	0.35	0.34	0.34			0.27	66
E/	FAST-ABF	mg/L N	NO DATA	NO DATA		NO DATA	NO DATA	NO DATA	R	NO DATA	NO DATA	NO DATA	Ż	Ž	NO DATA	NO DATA
Nitrate-Nitrite Nitrogen	Nitrogen															
Z	INFLUENT	mg/L N	0.02	0.01	0.01	0.26	0.28	0.01	×	0.01	0.01	0.05	0.12	0.01	0.07	
E/	FAST	mg/L N	15.00	8.20	13.00	12.00	12.00	9.70	0	12.00	9.50	5.90			9.49	NA
E/	FAST-ABF	mg/L N	NO DATA		3.90	9.60	11.00	6.10	z	8.10	10.00	0.01	0.01	2.00	5.79	
Total Kjeldahl Nitrogen	I Nitrogen								F							
Z	INFLUENT	mg/L N	38.00	32.00	62.00	44.00	37.00	29.00	т	56.00	48.00	65.00	46.00	46.00	45.73	
Ε	FAST	mg/L N	1.20			1.20	0.99	1.20		0.77	1.20	1.50	1.20	0.35	1.06	97.7
E/	FAST-ABF	mg/L N	NO DATA	0.96	1.30	06.0	09.0	1.30	0	0.99	0.82	2.30	2.90	1.20	1.33	97.1
Total Nitrogen(TKN+Nitrates)	1 (TKN+Nitrates)								ш							
Z	INFLUENT	mg/L N	38.02	32.01	62.01	44.26	37.28	29.01		56.01	48.01	65.05	46.12	46.01	45.80	
F4	FAST	mg/L N	16.20		-	13.20	12.99	10.90	Μ	12.77	10.70	7.40	5.90	2.75	10.55	77.0
Εł	FAST-ABF	mg/L N	NO DATA	8.16	5.20	10	11.60	7.40	A	9.09	10.82	2.31	2.91	3.20	7.12	84.5
Total Phosphorus	orus								≻							
N	INFLUENT	mg/L P	6.50	7.80	8.00	12.00	9.40	5.80		9.50	5.70	11.00	8.70	7.90	8.39	
ΕŻ	FAST	mg/L P	6.40	7.00	6.20	6.10	6.00	7.20		5.70	5.70	7.70	6.90	6.00	6.45	23.2
Ε¢	FAST-ABF	mg/L P	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA		NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA
Total Suspen	Suspended Solids															
N	INFLUENT	mg/L	68.00	48.00	68.00	90.06	108.00	66.00		70.00	114.00	100.00	133.00	92.00	87.00	
Ε¢	FAST	mg/L	1.00	3.00	5.00	3.00	6.00	6.00		16.00	1.00	1.00	1.00	3.00	4.18	95.2
	FAST-ABF	mg/L	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA		NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA	NO DATA
Fecal Coliforms	ns															
Z	INFLUENT	cts/100 ml	NO DATA	600,0	ő	600,000 Z	600,000	630,000		600,000	21,000	600,000	600,000	600,000	604,375	
Ε¢	FAST	cts/100 ml	NO DATA			450.00	63.00	140.00		1500.00	200.00	>600	270.00	3600.00	764.78	99.9
E4	FAST-ABF	cts/100 ml	NO DATA	NO DATA	NODATA	ATAC CIA	ATA CIA				and the second					

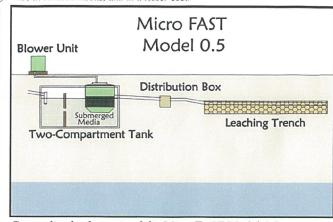
Q - Sample analyzed beyond the accepted holding limit. (Analyzed at client's request)
 V - Greater than 6,000. Fecal coliforms exceeded 60 counts on lowest filtration volume (1ml).
 Z - Greater than 60,000. Fecal coliforms exceeded 60 counts on lowest filtration volume (0.1ml).

Massachusetts Alternative Septic System Test Center Technology Fact Sheet -Interim Findings

MicroFAST ® Model 0.5

The Massachusetts Alternative Septic System Test Center is a collaborative project of the Buzzards Bay Project National Estuary Program, Massachusetts Office of Coastal Zone Management, Massachusetts Department of Environmental Protection, Barnstable County Department of Health and the Environment, and UMass Dartmouth School for Marine Science and Technology. The Test Center was established in recognition of the need in Massachusetts for cost-effective wastewater disposal systems suitable for sites with limited space, poor soils, high groundwater elevations, or where advanced pollutant removal is required. Its mission is twofold. First, to evaluate the performance and operation costs of new and innovative wastewater disposal technologies in a carefully controlled and unbiased manner, and provide this information to regulators and consumers. Second, to assist vendors in getting their technologies more quickly approved for use in Massachusetts, and at a lesser cost.

Technology Name: Technology Type:	MicroFAST®- residential unit, Model 0.5 Fixed Activated Sludge Treatment System
Manufacturer:	Bio-Microbics Inc. 8450 Cole Parkway Shawnee, KS 66227 913-422-0707 or 1-800-753-3278 (FAST)
Contact:	Robert J. Rebori, President
Company Website:	www.biomicrobics.com
	nitting info at MA DEP and BCHED Websites: www.state.ma.us/dep/brp/wwm/t5pubs.htm#it /ww.barnstablecountyhealth.org/AlternativeWebpage/
Testing Objectives:	Demonstrate N removal for use in N-sensitive watersheds. Obtain approval for reductions in SAS size or high groundwater elevation separa- tion distance.
Testing Period:	Testing began 5/99 and is ongoing. Results shown for 7/99 to 7/00.
Test Loadings:	System loading was 330 gpd, (in 15 doses AM/PM), SAS was 0.74 gallons per sq. ft per day.


Siting Considerations and Installation Notes

MicroFAST system component installation is similar to a standard Title 5 system. Installers should have training and oversight from the manufacturer. Above ground components include a blower with housing (approximately 2'x 2' x 2'), and an electrical control panel with an audio and visual alarm. Designer should consider situating the blower to minimize possibility for noise disturbance. Alternately, the blower can be installed in a belowground vault. Alarm and panel box should be accessible for inspection and maintenance.

Actual and Manufacturer's Estimated Costs (3-bedroom home) and Labor Non-Title 5 Components: \$2,995 suggested retail, this model (claim). Components + Installation: \$3,500 more than conventional (claim). *Electrical:* \$337 per year actual (local rates, annual KWh= 3,273). *O&M:* Quarterly inspection of motors, air flow, effluent and sludge. A service contract is required in Massachusetts (Approximately \$400 per year minimum, but varies). Septic tank pumping averages \$60 per year. Other Costs: Quarterly effluent quality monitoring is required for some permits (\$300 or more annually). Design and permitting costs vary. Replacement: Blowers (\$300) have a 2-year warranty by Bio-Microbics, extended 10 year warranty available, UL-CE-CSA certified electrical parts. No corrodible parts claimed to be in the unit.

Theory of Operation The MicroFAST consists of a modified two-compartment 1500-gallon septic tank, where the first compartment of 500-gallon capacity is used for primary settling of the household wastewater. The second compartment contains the submerged plastic media around which air, supplied by a blower, is diffused. This technology uses both attached and suspended growth in the second chamber to achieve the nitrification of wastewater (*i.e.*, conversion of ammonium to nitrate) entering from the primary settling chamber. The recycling of a portion of the nitrified effluent back to the anoxic settling chamber makes possible the denitrification step of the process (*i.e.*, conversion of nitrate to nitrogen gas).

Permitting and Use in Massachusetts (as of June 2001) Certification for General Use: MicroFAST is Certified for General Use and can be installed wherever a conventional Title 5 system can be installed. <u>Remedial Use Approval</u>: MicroFAST has approval in remedial situations where a system is failed, failing or nonconforming where relief

Generalized schematic of the MicroFAST Model 0.5.

MicroFAST during construction

MicroFAST after installation.

is sought to construct an SAS within two feet (or three feet for percolation rates exceeding two minutes per inch) of the high groundwater elevation, or to construct an SAS reduced in size by up to 50 percent or in areas where at least 2 feet of suitable material is available beneath the SAS. Model 0.5 is approved for up to 440 gpd or four bedrooms. <u>Provisional Use Approval</u>: MicroFAST is approved for use in nitrogen sensitive areas for new construction for systems designed for less than 2000 gpd. For residential systems up to 660 gpd per acre, for nonresidential systems up to 550 gpd per acre. Model 0.5 is only approved for up to 330 gpd or three bedrooms.

Note: In this study, the model tested employed a 1/3 hp blower that operated continuously. The manufacturer is currently testing a unit with the blower with an on-off cycle to reduce electrical consumption. These results will be reported in the 2-year performance summary. The manufacturer has other models available, and their performance may not be identical to the results reported here.

Operation and Maintenance Issues

[This information will be included in the final report findings.].

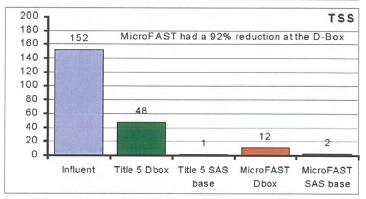
Explanation of the Graphs

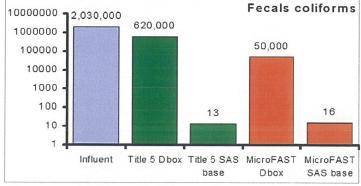
The graphs to the right show the mean of three replicates for each parameter over the testing period, compared to Title 5 performance and influent measured in parallel samples during the same period. Fecal coliform results are expressed as geometric means. In the nitrogen graph, NH4 represents ammonia, NOx represents nitrate + nitrite, DON is dissolved organic nitrogen, and PON is particulate organic nitrogen. Total nitrogen is the sum of these four parameters.

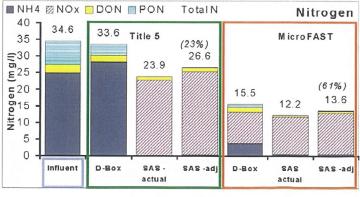
Soil absorption system samples include wastewater disposal system effluent and precipitation. The recharge of precipitation to groundwater is estimated to be between 8 and 16 percent of effluent discharge based on local rainfall, estimated groundwater recharge rates, SAS size and dosage rates. For all technologies, an interim dilution rate of 10 percent was employed based on precipitation and theoretical and measured dosage rates at the Test Center. The results for nitrogen removal include this estimated dilution factor (note bars labeled "SAS adj.") Results shown for biological oxygen demand (BOD), total suspended solids (TSS), and fecal coliforms were not adjusted for dilution by precipitation, because the adjustment was negligible in evaluating overall performance. This interim approach, is being compared to specific conductivity, chlorides, and bromide tracer to better refine this estimate, and develop system specific dilution factors. **Thus, the "SAS adjusted" values reported here for nitrogen discharge to groundwater should be considered preliminary.**

Summary of Interim Findings

This technology exceeds secondary treatment (*i.e.*, TSS and BOD less than or equal to 30 mg per liter) to allow for the reduced separation to groundwater, or reduced soil absorption system size. BOD and TSS concentrations at the base of the SAS for this technology and the Title 5 system are similar. This technology discharged below the regulatory standard of 19 mg/l TN to allow for use in nitrogen sensitive areas. At the SAS base, this system was estimated to remove 60 percent of nitrogen inputs compared to 22 percent for a Title 5 system during the same period. This system was not tested at the Test Center for seasonal or intermittent use or for high hydraulic loading conditions.


The Technical Review Committee does not recommend adoption of nitrogen loading ratings for this technology until the two-year testing period is complete. Differences in nitrogen removal among technologies tested are not necessarily significant. Nitrogen removal performance may vary with soil types and other site differences. The Buzzards Bay Project will recommend nitrogen loading rates for this technology for planning purposes and watershed loading evaluations at a later date.


Funding for the Massachusetts Septic System Test Center was provided by the US EPA, through Cooperative Agreements x991657 and x981007, the Massachusetts Department of Environmental Protection (319-99-01, 319-00-02), Massachusetts Office of Coastal Zone Management, Massachusetts Environmental Trust, Barnstable County Department of Health and Environ-



The trust, Database County Department of Treatmann Livinonment, UMass Dartmouth SMAST, and other organizations. Other information on this initiative can be found at www.buzzardsbay.org. These fact sheets were reviewed by a multi-agency work group. The views or opinions expressed are not necessarily those of the Commonwealth of Massachusetts, the US EPA, or any of the funding organizations and agencies. The information presented here represents the technical findings of the Massachusetts Septic System Test Center after at least one year of system testing. Manufacturer claims of cost and longevity, warranties, or stated costs have not been verified. Modifications to system designs from those tested, or installation under other soil or climate conditions may result in different system performance. This fact sheet was prepared and printed by the Buzzards Bay Project.

200 BOD 181 180 160 Microfast had a 90% reduction at the D-Box 140 (I/ 6 m) 120 100 100 BOD 80 60 40 18 20 3 0 Influent Title 5 Dbox Title 5 SAS MicroFAST MicroFAST SAS base base Dbox

Dr. Joe Costa, Executive Director 2870 Cranberry Highway East Wareham, MA 02538 508.291.3625

printed on recycled paper 🏵

BIO-MICROBICS

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

FAST® Wastewater Treatment Systems Field Data Summary

Installation Location: Halifax, Massachusetts Unit Type: ModularFAST® Application: Multi-Unit Residential Complex Design Flow:

17.24 20.2 23.8 10.37 4.5 9.92 20.1 17.1 Ł 47.15 40.5 3.3 3.9 2.5 3.8 3.5 2.8 ω 4 TKN 46.9 40 0.37 0.82 2.04 1.52 1.25 0.61 NH3 35.3 16.2 9.24 14.6 16.8 7.12 6.47 20 N03 0.16 0.5 Effluent <1.2 FOG Influent 38.3 Effluent 12.4 13.6 8.6 7.6 12 40 6 ∞ TSS Influent 78.3 402 Effluent 20.8 13.5 12.6 2.3 8.3 7.3 9.1 თ BOD Influent 170 209 11/27/2001 5/19/1998 7/23/1998 9/15/1998 4/22/1998 12/9/1998 3/4/1999 9/7/1999 Date

BIO-MICROBICS

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

£

.

FAST® Wastewater Treatment Systems Field Data Summary

nstallation Location:	Jnit Type & Size:	Application:	esign Flow:
nsta	Jnit -	Appli	Desig

Sandwich, Massachusetts ModularFAST® Health Center 2385 GPD

StartDate	Sample Date	Influent pH	Effluent pH	Influent BOD	Effluent BOD	Influent TSS	Effluent TSS	Influent TKN	Effluent TKN
11/21/00	2/27/01	8.9	7.5	28.1	4.2	24.2	11	38	7.8
	3/29/01		8.1	15.8	19.1	47.7	10.8	51	4.88
	4/26/01		8.4	140	5.6	81	<2	69	3.05
	5/24/01	8.5	8.2	123	12.2	44	7.5	92.7	6.4
	6/28/01		8	86	4.2	75.8	<2	47.9	13.5
	7/31/01		7.7	46.4	10.6	40.5	3	22.6	2.02
	10/2/01			78.6	9.7	34	3	24.5	1.9
	10/26/01			21	5.6	27.5	2	19.1	1.87
	11/28/01		6.8	69	10	20.5	<2	18.8	1.3
	2/28/02	8.2	7.1	142	7.9	120	4.5	42.3	6.42
	5/31/02		6.3		5		<10		1.8

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

¥

FAST® Wastewater Treatment Systems Field Data Summary

Sherborn, Massachusetts ModularFAST® Clustered Residential 4600 GPD

StartDate	Sample Date	Influent pH	Effluent pH	Influent BOD	Effluent BOD	Influent TSS	Effluent TSS	Influent TKN	Effluent TKN
2/8/00	5/22/00	7.7	7.20	162	22.9	344	11.20	36.6	10.70
	6/28/00	8.1	7.50	146	8.4	38.8	8.40	39	5.10
	8/17/00	7.3	7.50	140	<4.0	55.5	6.40	37.8	5.60
	9/26/00	7.1	7.60	261	10.2	89	6.00	46.1	8.50
	10/25/00	7.1	7.80	170	7.3	32.7	3.60	49.3	10.60
	2/16/01	7.3	7.80	255	11.2	668	5.60	65.3	30.60
	5/31/01	7.3	7.70	161	<4	31.3	<2	39.3	7.60
	8/9/01	7.3	7.80	147	6.6	34.7	2.50	37.2	5.72
	10/1/01				11		<10		13.00
	2/27/02	7.3	7.80	134	<4	54	2.00	46.3	25.90
	5/28/02	7.6	7.6	139	5.5	530	6.9	64	6

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

a

FAST® Wastewater Treatment Systems Field Data Summary

cation:	ze:		
Installation Location:	Unit Type & Size:	Application:	Design Flow:

Sudbury, Massachusetts ModularFAST® Clustered Residential 6630 GPD

StartDate	Sample Date	Sample Date Influent pH	Effluent pH	Influent BOD	Effluent BOD	Influent TSS	Effluent TSS	Influent TKN	Effluent TKN
12/3/01	12/27/01	7.3	7.8	160	9.2	40.7	4		
	01/14/02	7.3	8.1	161	12	26	4.2	63.9	55
	02/28/02	7.4	7.3	234	31.6	280	21.3	44.3	10.8
	03/26/02	6.8	7.5	130	6	20	11	56	18
	04/23/02	7.5	7.5	210	8	67	<10	44	7
	05/22/02	7.1	7.1	28	3	16	<10	6.3	2.4
	06/26/02	7.2	7.5	29	27	27	18	11	8.4
	7/16/02	7.3	7.5	19	.17	15	17	6.1	6

BIO-MICROBICS

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

r ×

4

FAST® Wastewater Treatment Systems Field Data Summary

 Installation Location:
 Coonemesett Inn, Massachusetts

 Unit Type & Size:
 2 HighStrengthFAST® 9.0s

 Application:
 Hotel & Restaurant

 Design Flow:
 15,000 GPD

		1	1		1	1		1	_	1	1		1	1		-	 _
TN	Effluent	6.3	3.96	2.88	7.57	4.99	9.61	11	5.68	4	29.4	5.07	10.7	10.2	22.8	13.2	
F	Influent																
TKN	Effluent	5.6	3.01	1.47	6.65	2.94	7.91	8.05	4.86	1.6	29.4	3.77	9.4	9.64	22.8	11.8	
4L	Influent																
NH3	Effluent	2.31	0.42	<0.1	<0.1	0.42	<0.1	0.7	1.09	<0.1	23.8	0.87	<0.2	0.87	0.98	1.47	
N	Influent																
NO3	Effluent	0.7	0.95	1.14	0.92	2.05	1.7	2.97	0.8	2.4	0.01	1.3	1.3	0.52	<0.05	1.38	
NG	Influent																
TSS	Effluent	32	6	8.4	18.8	24.2	20	17	13	8.7	39.3	29.4	27.8	22.2	46.7	154.3	31.39
TS	Influent																
BOD	Effluent	5.4	<3.0	25.5	14	10.2	23.7	21.8	18.1	8.1	72	7.5	33	42.6	44.2	58	29.13
BG	Influent																600
g	Effluent	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
FOG	Influent																
Date		8/9/1996	9/5/1996	10/8/1996	11/7/1996	1/7/1997	2/5/1997	3/5/1997	6/10/1997	9/10/1997	7/29/1998	10/6/1998	1/12/1999	4/27/1999	7/15/1999	10/6/1999	Averages

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

з⁴ ж

R

FAST® Wastewater Treatment Systems Field Data Summary

Installation Location: Fuego, Washington	Fuego, Washington
Unit Type & Size:	HighStrengthFAST® 1.5
Application:	Restaurant
Design Flow:	500 GPD

	and the second se		A REAL PROPERTY AND A REAL		THE OWNER WHEN THE PARTY NAMED IN COLUMN							
Date	BC	BOD	TSS	Ş	FC	FOG	N	NH3	Ļ	TKN	TN	_
	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
9/17/2003	700	19	80	19								
10/29/2003	1000	15	138	12	43.1	2.5						
11/21/2003	970	49	230	43	87	6.1						
12/27/2003	910	73	300	110	170	11						
Averages	895.00	39.00	187.00 46.00 100.03	46.00	100.03	6.53						
the subscription of the local data is not the subscription of the local data is not the local data in the local data is not the local data in the local data is not the local data in the local data is not the local data in the local data in the local data is not the local data in the local data is not the local data in the local data i			The second data is a second data and the secon			No. of Concession, Name of	No. of Concession, Name of		No. of Concession, Name of			

۶. . . »

FAST® Wastewater Treatment Systems - Field Data Summary

Installation Location:	Littleton, Massachusetts
Unit Type & Size:	ModularFAST®
Application:	Grocery Store

		INFLUE	IT		EFFLUE	NT				
DATE	FLOW	BOD	TSS	TN	BOD	TSS	NO3-N	NH4-N	TN	TKN
	gpd	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
3/22/2000	12,570	433.0	550.0	92.0	6.0	5.0	1.0	0.8	1.6	0.6
4/19/2000	12,250	426.0	398.0	79.0	6.0	5.0	1.3	1.1	3.0	1.7
5/26/2000	11,150	345.0	474.0	114.0	6.0	5.0	1.4	1.0	1.4	0.0
6/29/2000	12,170	840.0	504.0	78.2	6.0	5.0	1.0	0.7	1.5	0.5
7/20/2000	10,740	555.0	592.0	93.2	6.0	5.0	1.0	0.8	1.5	0.5
8/24/2000	10,610	375	486	76.7	5.1	5.0	1	0.64	1.82	0.8
9/29/2000	9,920	450.0	650.0	104.0	6.0	5.0	1.0	<0.5	1.8	0.8
10/20/2000	9,570	540.0	568.0	108.5	6.0	5.0	1.9	0.6	4.2	2.3
11/21/2000	11,210	335	508	75.4	4.8	5.0	1	1.06	2.1	1.1
12/28/2000	12,210	401	400	83	6.0	5.0	1	1.2	1.92	0.9
1/30/2001	10,320	360	594	108	6.0	5.0	6.98	0.92	9.22	2.2
2/21/2001	10,100	198	584	104	6.0	5.0	1.13	1	3.26	2.1
3/23/2001	12,400	209	356	72.5	8.4	6.0	1	0.62	1.78	0.8
4/24/2001	9,190	237	520	96.3	6.2	5.0	1	0.72	2.14	1.1
5/18/2001	9,500	480	500	103	6.0	5.0	1	2.2	2.2	1.2
6/13/2001	9,510	215	524	101.8	6.6	5.0	1	0.92	3.1	2.1
7/12/2001	9,080	344	510	89	6.0	5.0	1	1.48	2	1.0
8/8/2001	7,770	372	376	95.8	11.3	5.0	1	1.32	2.55	1.6
9/5/2001	5,800	285	484	87.3	6.0	5.0	2.52	0.5	4.85	2.3
10/5/2001	6,900	390	582	122	6.0	5.0	1	1.8	2.3	1.3
11/7/2001	9,550	369	644	123	5.9	5.0	1	0.58	3.49	2.5
12/4/2001	9,820	452	539	90.4	6.0	5.0	1.14	1.06	2.2	1.1
1/9/2002	12,780	464	593	116	6.0	5.0	1	0.58	2.17	1.2
2/8/2002	12,550	273	496	104	6.0	5.0	1.71	1	3.94	2.2
3/7/2002	10,700	540	590	108	7.3	5.0	1	1.32	2.42	1.4
4/10/2002	11,570	353	592	116	9.9	5.0	1	1.4	2.32	1.3
5/8/2002	11,620	409	678	175	8.1	5.0	1	1	2.52	1.5
6/5/2002	11,840	216	448	103	6.0	5.0	1.28	1.04	4.23	3.0
7/17/2002	10,000	320	436	75.7	6.0	5.0	2.19	0.58	3.66	1.5
8/8/2002	10,030	327	514	66.8	<u>6.0</u>	5.0	1	0.5	2.15	1.2
9/11/2002	10,550	510	572	106.6	14.1	5.0	1	0.74	2	1.0
10/4/2002	8,160	434	474	81.4	<u>6.0</u>	5.0	2.21	0.66	4.18	2.0
11/8/2002	19,960	395	610	93.3	7.8	5.0	1	0.5	1.82	1.82
12/12/2002	8,250	342	506	101	<u>6.0</u>	5.0	1.41	1.47	3.33	
1/10/2003	15,190	401	572	123	6.0	8.0	1.11	0.5	2.86	1.75
2/5/2003	10,620	300	506	121	6.0	5.0	1	1.04	2.4	2.46
3/14/2003	11,390	352	704	135	7.2	5.0	1	0.5	1.85	1.85
4/9/2003	11,080	286	578	120	6.0	5.0	1	0.5	2.03	2.03
6/6/2003	12,670	358	442	105	6	5	1	1.58	2.01	2.01

BIO-MICROBICS

Bio-Microbics, Inc. • Ph: 913-422-0707 • Fax: 913-422-0808 • sales@biomicrobics.com

* ,< *

FAST® Wastewater Treatment Systems Field Data Summary

Installation Location: Mashpe Unit Type & Size: 2 HSF 9 Application: Mashpe Design Flow: 15,000

Mashpee, MA 2 HSF 9.0 Mashpee 99 Restaurant 15,000 GPD

Effluent Influent Effluent 55.8 800 18 55.8 800 18 19.4 6.5 15 19.4 78 6.5 91.5 7820 87.5 41.7 9450 48 123 3320 256 67.2 5470 104	Effluent Influent 18 <0.5 6.5	ent Effluent 5 1.01	Influent					Z
			CALL STREET, STREE	Effluent	Influent	Effluent	Influent	Effluent
	6.5				51.1	22.3	51.6	23.31
	15							
	87.5 1.46	5 1.04	71.3	26	132	40.8	133.46	41.84
	48 <0.5	5 <0.5	34.9	10.1	128	22.5	128.5	23
	256 0.5	<0.5	30.6	18.2	92.4	62	92.9	62.5
	104 <1.0	<pre>> <1.0</pre>	33.3	14	188	28	189	29
667 18.5	18.5 2.74	11 11	56	8.25	06	24	92.74	35
4588 69	69							

* *

FAST® Wastewater Treatment Systems - Field Data Summary

Installation Location:	Plymouth, Massachusetts
Unit Type & Size:	ModularFAST®
Application:	Grocery Store
Design Flow:	4000 GPD

Date	BC	DD	T	SS	FC	DG
	Influent	Effluent	Influent	Effluent	Influent	Effluent
10/5/1999	510	20	260	29	62	10
11/2/1999	780	11	65	38	54	9
11/11/1999	521	23	362	21		
12/6/1999	570	3	460	8	68	12
1/4/2000	930	34	520	24	51	9

 $\sigma = \varphi^{0}$

FAST® Wastewater Treatment Systems - Field Data Summary

Installation Location:	Richmond, Rhode Island
Unit Type & Size:	ModularFAST®
Application:	Grocery Store
Design Flow:	4000 GPD

Date	B	DD	T	SS	FC	DG
	Influent	Effluent	Influent	Effluent	Influent	Effluent
11/11/1999	415	23	144	18		<0.1
11/17/1999	630	11	200	23	62	49
12/7/1999	590	32	180	56	55	29
1/3/2000	550	59	140	26	70	11

Environmental Technology Verification Report

Reduction of Nitrogen in Domestic Wastewater from Individual Residential Homes

Bio-Microbics, Inc. RetroFAST[®] 0.375 System

Prepared by

NSF International

Under a Cooperative Agreement with U.S. Environmental Protection Agency

THE ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM

ETV Joint Verification Statement

TECHNOLOGY TYPE:	BIOLOGICAL WASTEWATER NITRIFICATION AND DENITR REDUCTION	
APPLICATION:	REDUCTION OF NITROGEN IN FROM INDIVIDUAL RESIDENT	
TECHNOLOGY NAME:	RETROFAST [®] 0.375 SYSTEM	
COMPANY:	BIO-MICROBICS	
ADDRESS:	8450 COLE PARKWAY SHAWNEE, KS 66227	PHONE: (913) 422-0707 FAX: (913) 422 0808
WEB SITE: EMAIL:	http://www.biomicrobics.com onsite@biomicrobics.com	

NSF International (NSF) operates the Water Quality Protection Center (WQPC) under the U.S. Environmental Protection Agency's (EPA) Environmental Technology Verification (ETV) Program. The WQPC evaluated the performance of a submerged attached-growth biological treatment system for nitrogen removal for residential applications. This verification statement provides a summary of the test results for the Bio-Microbics, Inc. RetroFAST[®] 0.375 System (RetroFAST[®]). NovaTec Consultants, Inc. (NovaTec) performed the verification testing.

EPA created the ETV Program to facilitate deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV program is to further environmental protection by accelerating the acceptance and use of improved and cost-effective technologies. ETV seeks to achieve this goal by providing high quality, peer reviewed data on technology performance to those involved in the design, distribution, permitting, purchase, and use of environmental technologies.

ETV works in partnership with recognized standards and testing organizations; stakeholder groups consisting of buyers, vendor organizations, and permitters; and the full participation of individual technology developers. The program evaluates the performance of innovative technologies by developing test plans that are responsive to the needs of stakeholders, conducting field or laboratory tests (as appropriate), collecting and analyzing data, and preparing peer reviewed reports. All evaluations are conducted in accordance with rigorous quality assurance protocols to ensure that data of known and verifiable quality are generated, and that the results are defensible.

03/08/WQPC-SWP The accompanying notice is an integral part of this verification statement.

Ann Arbor, MI · Sacramento, CA · Washington, D.C. · Brussels, Belgium

Data Summary for BioMicrobics, Inc. RetroFAST 0.375 Under the EPA ETV Water Quality Protection Center

The following is a preliminary summary of the test results obtained for the BioMicrobics, Inc. RetroFAST 0.375 system for nutrient reduction under the ETV Water Quality Protection Center. These results have been QA reviewed, but will not be considered final until all EPA reviews have been completed. The testing was completed at the Mamquam Wastewater Technology Test Facility (British Columbia) during the period of September 2001 through October 2002. The data summarized below does not include data for November 2001 because of errors in testing. A full report for this testing will be completed soon and posted on the EPA (www.epa.gov/etv) and NSF (www.nsf.org/etv) web sites.

	BOD₅	CBOD ₅			TSS	
	Influent (mg/L)	Effluent (mg/L)	Removal Percent	Influent (mg/L)	Effluent (mg/L)	Removal Percent
No. Samples	61	61		61	61	
Average	150	12	92	190	28	84
Median	140	12	92	170	23	88
Max	210	28	98	440	170	98
Min	60	2.0	79	110	3	14
Std. Dev.	29	5.9	7.4	59	25	15

Table 1. BOD₅/CBOD₅ and TSS Data Summary

Table 2. Nitrogen Data Summary

	TK (mg		Amm (mg		Total Ni (mg	0	Nitrate (mg/L)	Nitrite (mg/L)
	Influent	Effluent	Influent	Effluent	Influent	Effluent	Effluent	Effluent
No. Samples	61	61	61	61	61	61	59	58
Average	39	11	28	6.0	39	19	7.9	< 0.002
Median	37	6.6	28	3.7	37	18	9.0	< 0.002
Maximum	64	44	42	30	64	44	18	0.006
Minimum	28	1.7	19	0.2	28	6.4	0.1	< 0.002
Std. Dev.	8.9	10	4.0	6.9	8.9	7.6	5.0	0.002

NSF Contact: Thomas Stevens (734) 769-5347 stevenst@nsf.org

Appendix B

CLIFTON ASSOCIATES LTD ATTN: CINDY / SUMITH 4 - 1925 1ST AVE. NORTH SASKATOON SK S7K 6W1 Date Received:04-JUL-12Report Date:10-JUL-12 08:27 (MT)Version:DRAFT REV. 3

Client Phone: 306-975-0401

Certificate of Analysis

Lab Work Order #:

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: L1172891 NOT SUBMITTED S1607.7 10-208196, 10-208197

Comments:

10-JUL-12: BOD results forthcoming (11-July).

Brian Morgan Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: #819-58th St E., Saskatoon, SK S7K 6X5 Canada | Phone: +1 306 668 8370 | Fax: +1 306 668 8383 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-1 BH211							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (AI)-Total	4.64	DLA	0.010	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.00444	DLA	0.00020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	0.352	DLA	0.00020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	0.035	DLA	0.020	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.000332	DLA	0.000020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.00745	DLA DLA	0.00020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.0060 6.69	DLA	0.0010 0.020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Lead (Pb)-Total	0.00416	DLA	0.00010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	0.826	DLA	0.00060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	<0.00020	DLA	0.00020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.00520	DLA	0.000020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.0311	DLA	0.0060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters	1			Ũ			
Turbidity	372		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	294		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	359		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	1.9		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	0.30		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.00		0.10		00 002 12	0000212	112000207
Calcium (Ca)	84.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	2.5		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	26.1		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	7.2		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	30.2		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.538		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N							
Nitrate-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	<0.050		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity pH	7 27	ЕНТ	0.10	ъН	05-JUL-12	05-JUL-12	D2202088
Conductivity (EC)	7.37 588		0.10 10	pH uS/cm	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2392988 R2392988
Total Coliform, EColi Mcoli Blue & HPC	500		10	00/011	00 00L-12		112032300
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			1	5. 5, 100mL			112004200
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF							
Total Coliforms	OVERGROWN		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-2 BH202							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	1.24	DLA	0.010	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.00346	DLA	0.00020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total Boron (B)-Total	0.0686 0.188	DLA DLA	0.00020	mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Cadmium (Cd)-Total	0.00081	DLA	0.020 0.000020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Chromium (Cr)-Total	0.00205	DLA	0.000020	mg/L		09-JUL-12	R2395195 R2395195
Copper (Cu)-Total	0.00203	DLA	0.00020	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	2.45	DLA	0.020	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.00150	DLA	0.00010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	0.695	DLA	0.00060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	<0.00020	DLA	0.00020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0270	DLA	0.000020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.0134	DLA	0.0060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	55.8		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	383		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	467		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	5.0		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)	5.0		1.0	ing/L	00-001-12	00-001-12	12393031
Fluoride (F)	0.22		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.22		0.10				112000201
Calcium (Ca)	127		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	6.9		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	54.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	66.0		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	263		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	0.082		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.574		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N	0.50		0.50	~~~~/l	05 11 10	05 11 12	Dagagaga
Nitrate-N Nitrite-N	<0.50 <0.050		0.50	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.050		0.050 0.50	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393099 R2393099
pH and Conductivity	<0.50		0.50	iiig/ E	00 002 12	00 002 12	112030033
pH and conductivity	7.19	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	1150		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC			-				
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			-				
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF Total Coliforms	OVERGROWN		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
	OVERGROWN		I	CF 0/ TOUTIL	00-30L-12	07-301-12	RZ394Z38

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-3 BH201							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	10.5	DLA	0.010	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0103	DLA	0.00020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	0.709	DLA	0.00020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	0.060	DLA	0.020	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.000302	DLA DLA	0.000020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.0155	DLA	0.00020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.0278 16.4	DLA	0.0010 0.020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Lead (Pb)-Total	0.0257	DLA	0.00010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	0.998	DLA	0.00060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.00072	DLA	0.00020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0276	DLA	0.000020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.0910	DLA	0.0060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters	1			Ŭ			
Turbidity	424		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	296		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	361		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	6.7		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	0.20		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.20		0.10	ing/ E	00 002 12	00 002 12	112000207
Calcium (Ca)	88.8		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	3.4		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	25.7		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	15.8		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	35.9		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.602		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N					of		
Nitrate-N	< 0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	<0.050		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity pH	7.28	EHT	0.10	рН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	639		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC	000		10	u0,011	50 00L-12		112032300
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			•				112004200
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF							
Total Coliforms	890		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-4 BH208							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	8.33	DLA	0.010	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0119	DLA	0.00020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	0.834	DLA	0.00020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	0.025	DLA	0.020	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.000332	DLA	0.000020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.0125	DLA DLA	0.00020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.0158 17.7	DLA	0.0010 0.020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Lead (Pb)-Total	0.0134	DLA	0.00010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	1.89	DLA	0.00060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.00800	DLA	0.00020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.00397	DLA	0.000020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.0691	DLA	0.0060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters				Ŭ			
Turbidity	1340		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	341		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	417		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	7.9		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations							
Calcium (Ca)	140		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	4.7		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	32.5		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	16.5		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	139		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	< 0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.0057		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N Nitrate-N	7.10		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	<0.050		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	7.12		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity			0.00	<u>9</u> / =			
pH	7.24	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	920		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC							
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			1	ST 5/ TOUTIL	00 00L-12		112004200
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF	20000						
Total Coliforms	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-5 BH203							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	150	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.268	DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	23.1	DLA	0.0050	mg/L		09-JUL-12	R2395195
Boron (B)-Total	0.23	DLA	0.20	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.0108	DLA DLA	0.00020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.265	DLA	0.0020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.319 430	DLA	0.010 0.20	mg/L mg/L		09-JUL-12	R2395195 R2395195
Lead (Pb)-Total	0.383	DLA	0.20	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	29.6	DLA	0.0010	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.0069	DLA	0.0020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0256	DLA	0.00020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	1.78	DLA	0.060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters	_			Ŭ			
Turbidity	>4000		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	314		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	383		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	40.6		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	0.20		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.20		0110				
Calcium (Ca)	173		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	7.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	53.7		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	44.7		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	186		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.0895		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N			0.50	mc/l	05 11 1 40		Dogoooc
Nitrate-N Nitrite-N	51.0		0.50	mg/L	05-JUL-12	05-JUL-12 05-JUL-12	R2393099
Nitrate+Nitrite-N	0.276 51.3		0.050 0.50	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393099 R2393099
pH and Conductivity	51.5		0.50	iiig/L	03-301-12	03-301-12	RZ393099
pH and Conductivity	7.51	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	1420		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC							
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count							112004200
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF							
Total Coliforms	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-6 BH210							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	58.9	DLA	0.050	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0779	DLA	0.0010	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	4.80	DLA	0.0010	mg/L		09-JUL-12	R2395195
Boron (B)-Total Cadmium (Cd)-Total	<0.10	DLA DLA	0.10	mg/L		09-JUL-12 09-JUL-12	R2395195
Chromium (Cr)-Total	0.00282	DLA	0.00010 0.0010	mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Copper (Cu)-Total	0.0978	DLA	0.0010	mg/L mg/L		09-JUL-12	R2395195 R2395195
Iron (Fe)-Total	175	DLA	0.0050	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.162	DLA	0.00050	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	4.12	DLA	0.00000	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.0195	DLA	0.0010	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.00942	DLA	0.00010	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.631	DLA	0.030	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	>4000		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	224		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	274		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	5.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	<0.10		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations							
Calcium (Ca)	63.4		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	2.3		1.0	mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg) Sodium (Na)	14.9 5.4		1.0 2.0	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393328 R2393328
Sulfur (as SO4)	18.0		2.0 3.0	mg/L	05-JUL-12	05-JUL-12	R2393328 R2393328
Iron (Fe) & Manganese (Mn) -Dissolved	10.0		3.0	ing/∟	03-302-12	03-301-12	NZ393320
Iron (Fe)-Dissolved	0.035		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.113		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N							
Nitrate-N	0.61		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	0.065		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	0.67		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity							
pH	7.33	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	443		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
L1172891-7 BH204							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							

8.21 0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190 1.12	DLA DLA DLA DLA DLA DLA DLA DLA	0.010 0.00020 0.00020 0.020 0.00020 0.00020	mg/L mg/L mg/L mg/L mg/L		09-JUL-12 09-JUL-12 09-JUL-12 09-JUL-12	R2395195 R2395195 R2395195
0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA DLA DLA	0.00020 0.00020 0.020 0.000020 0.00020	mg/L mg/L mg/L mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA DLA DLA	0.00020 0.00020 0.020 0.000020 0.00020	mg/L mg/L mg/L mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA DLA DLA	0.00020 0.00020 0.020 0.000020 0.00020	mg/L mg/L mg/L mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA DLA DLA	0.00020 0.00020 0.020 0.000020 0.00020	mg/L mg/L mg/L mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
0.0164 0.683 0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA DLA	0.00020 0.020 0.000020 0.00020	mg/L mg/L mg/L mg/L		09-JUL-12	R2395195
0.052 0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA DLA	0.020 0.000020 0.00020	mg/L mg/L mg/L			R2395195
0.000624 0.0131 0.0172 21.1 0.0190	DLA DLA DLA	0.000020 0.00020	mg/L mg/L		09-JUL-12	DOCOTION
0.0131 0.0172 21.1 0.0190	DLA DLA	0.00020	-			R2395195
0.0172 21.1 0.0190	DLA				09-JUL-12	R2395195
21.1 0.0190		0 0010	mg/L		09-JUL-12	R2395195
0.0190	DLA	0.0010	mg/L		09-JUL-12	R2395195
		0.020	mg/L		09-JUL-12	R2395195
1 12	DLA	0.00010	mg/L		09-JUL-12	R2395195
	DLA	0.00060	mg/L		09-JUL-12	R2395195
0.00034		0.00020	mg/L		09-JUL-12	R2395195
0.00163			mg/L			R2395195
0.0736	DLA	0.0060	mg/L		09-JUL-12	R2395195
					ĺ	
>4000		0.10	NTU		06-JUL-12	R2393860
			U U			R2393108
			-			R2393108
			-			R2393108
<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
24		1.0	ma/l	05 11 12	05 11 12	D 000001
3.4		1.0	ing/∟	05-JUL-12	05-JUL-12	R2393031
-0.10		0.10	ma/l	05-1111-12	05-1111-12	R2393297
20.10		0.10	iiig/L	00 002 12	0000212	112000207
89.9		1.0	ma/L	05-JUL-12	05-JUL-12	R2393328
			-			R2393328
			-	05-JUL-12	05-JUL-12	R2393328
		2.0	-	05-JUL-12	05-JUL-12	R2393328
104		3.0	-	05-JUL-12	05-JUL-12	R2393328
<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
0.297		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
<0.050		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
7.59	EHT	0.10	рН	05-JUL-12	05-JUL-12	R2392988
711		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
					1	
,			0511/100			
<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
		40	OFLIVE		00 11 10	Doocaact
>3000		10	CFU/ML	UD-JUL-12	U8-JUL-12	R2394461
20		1	CELI/100ml	06-1111 12	07-1111 12	R2394258
30		I		00-301-12	07-JUL-12	12394230
					1	
					1	
					1	
	0.00034 0.00163 0.0736 >4000 282 344 <5.0 <5.0 3.4 <0.10 89.9 10.5 35.8 9.4 104 <0.030 0.297 <0.50 <0.050 <0.50 <0.50 <7.59	0.00034 0.00163 0.0736 DLA DLA DLA DLA DLA DLA DLA CALA DLA DLA DLA DLA DLA DLA DLA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00034 DLA 0.00020 mg/L 0.0736 DLA 0.00020 mg/L >4000 0.10 NTU 282 5.0 mg/L 344 5.0 mg/L <5.0	0.00034 0.00163 0.0736 DLA DLA DLA 0.00020 0.00060 mg/L mg/L mg/L 05-JUL-12 05-JUL-12 05-JUL-12 >4000 0.10 NTU 05-JUL-12 05-JUL-12 05-JUL-12 05-JUL-12 344 5.0 mg/L mg/L 05-JUL-12 05-JUL-12 3.4 1.0 mg/L 05-JUL-12 3.4 1.0 mg/L 05-JUL-12 40.10 0.10 mg/L 05-JUL-12 3.4 1.0 mg/L 05-JUL-12 40.10 0.10 mg/L 05-JUL-12 3.4 1.0 mg/L 05-JUL-12 3.4 0.10 mg/L 05-JUL-12 40.10 0.10 mg/L 05-JUL-12 3.8 1.0 mg/L 05-JUL-12 3.0 mg/L 05-JUL-12 05-JUL-12 3.0 mg/L 05-JUL-12 05-JUL-12 <0.050	0.00034 0.00163 0.0736 DLA DLA DLA 0.00020 0.000020 0.0060 mg/L mg/L mg/L mg/L 09-JUL-12 09-JUL-12 09-JUL-12 >4000 0.10 NTU 06-JUL-12 05-JUL-12 05-JUL-12 05-JUL-12 05-JU

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-8 CAL104							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS			0.000000				
Aluminum (Al)-Total	37.4	DLA	0.050	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0516	DLA	0.0010	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	2.75	DLA	0.0010	mg/L		09-JUL-12	R2395195
Boron (B)-Total	<0.10	DLA	0.10	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.00138	DLA	0.00010	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total	0.0615	DLA	0.0010	mg/L		09-JUL-12	R2395195
Copper (Cu)-Total	0.0629	DLA	0.0050	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	89.0	DLA	0.10	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.0727	DLA	0.00050	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	1.29	DLA	0.0030	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.0023	DLA	0.0010	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0134	DLA	0.00010	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.401	DLA	0.030	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	1740		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	227		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	277		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)	7.4		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F) Fluoride (F)	0.23		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations							
Calcium (Ca)	73.4		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	4.0		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	28.8		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	29.2		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	112		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.0309		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N	0.50		0.50	m c ^{.//}			Doocooco
Nitrate-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	<0.050		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity pH	7.46	EHT	0.10	рН	05-JUL-12	05-JUL-12	R2392988
рп Conductivity (EC)	651		10	uS/cm	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC	001		10	uo/un	00-00L-12	03-301-12	172392900
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
	<1		I	OF OF TOUTIL	00-JUL-12	07-301-12	172394238
Heterotrophic Plate Count Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF	20000		10	S. Onite			112004401
Total Coliforms	190		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
	150			51 5, 100mL	30 000 12	0.000.12	112007200

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-9 BH205							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	72.6	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0629	DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	3.20	DLA	0.0020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	<0.20	DLA	0.20	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.00179	DLA	0.00020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.115	DLA DLA	0.0020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.149 160	DLA	0.010 0.20	mg/L mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Lead (Pb)-Total	0.118	DLA	0.20	mg/L		09-JUL-12	R2395195 R2395195
Manganese (Mn)-Total	2.78	DLA	0.0010	mg/L		09-JUL-12	R2395195 R2395195
Selenium (Se)-Total	0.0096	DLA	0.0000	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0265	DLA	0.00020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.667	DLA	0.060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters	1			Ŭ			
Turbidity	613		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	294		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	359		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	5.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)	0.22		0.10	ma/l	05 11 12	05-JUL-12	D 000007
Fluoride (F)	0.22		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations Calcium (Ca)	106		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	2.9		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	30.9		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	7.7		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	95.3		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved				Ū			
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.163		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N							
Nitrate-N	0.72		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	0.110		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	0.83		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity	7.00		0.40	- L I	05 11 40	05 11 40	Dopococc
pH Conductivity (EC)	7.66	EHT	0.10	pH	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC	721		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Escherichia Coli mcoli blue MF							
E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count							
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF			-				
Total Coliforms	70		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-10 BH213							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	0.586	DLA	0.010	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.00213	DLA	0.00020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total Boron (B)-Total	0.136	DLA DLA	0.00020	mg/L		09-JUL-12 09-JUL-12	R2395195
Cadmium (Cd)-Total	0.038 0.000025	DLA	0.020 0.000020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Chromium (Cr)-Total	0.00023	DLA	0.000020	mg/L		09-JUL-12	R2395195 R2395195
Copper (Cu)-Total	0.00127	DLA	0.00020	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	1.25	DLA	0.020	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.00085	DLA	0.00010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	0.617	DLA	0.00060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	<0.00020	DLA	0.00020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.00284	DLA	0.000020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.0080	DLA	0.0060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	13.5		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	190		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	231		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	2.3		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)	2.5		1.0	ing/L	00-001-12	05-501-12	NZ393031
Fluoride (F)	0.20		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.20		0.10				112000201
Calcium (Ca)	76.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	3.1		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	21.3		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	8.6		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	95.5		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.526		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N	0.50		0.50	//		05 11 40	Dooccos
Nitrate-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N Nitrate+Nitrite-N	<0.050 <0.50		0.050 0.50	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393099 R2393099
	<0.50		0.50	mg/∟	03-JUL-12	05-JUL-12	RZ393099
pH and Conductivity pH	7.52	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	550		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC							
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			•				
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF Total Coliforms	OVERGROWN		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
TUTAL COMUTINS	OVERGROWN		1	CFU/100mL	00-JUL-12	07-JUL-12	RZ394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-11 BH206							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	88.0	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0756	DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total Boron (B)-Total	4.93 <0.20	DLA DLA	0.0020	mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Cadmium (Cd)-Total	0.00491	DLA	0.20 0.00020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Chromium (Cr)-Total	0.147	DLA	0.00020	mg/L		09-JUL-12	R2395195
Copper (Cu)-Total	0.200	DLA	0.0020	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	207	DLA	0.20	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.177	DLA	0.0010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	5.50	DLA	0.0060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	<0.0020	DLA	0.0020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0300	DLA	0.00020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.974	DLA	0.060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	>4000		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	423		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	516		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	1.8		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)	1.0		1.0	iiig/L	00 002 12	00 002 12	112030001
Fluoride (F)	0.14		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations				5			
Calcium (Ca)	110		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	3.4		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	41.7		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	7.6		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	18.3		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.184		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N Nitrate-N	-0.50		0.50	ma/l	05-JUL-12	05-JUL-12	D 2202000
Nitrite-N	<0.50 <0.050		0.50 0.050	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12	R2393099 R2393099
Nitrate+Nitrite-N	<0.00		0.000	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity	<0.50		0.00	iiig/ E	00 002 12	00 002 12	112000000
pH	7.49	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
, Conductivity (EC)	786		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC			-				
Escherichia Coli mcoli blue MF E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			•				
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF							
Total Coliforms	40		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-12 BH207							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS	<0.000000		0.000000	g/ E		0000212	112000022
Aluminum (Al)-Total	0.76	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0023	DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	0.0412	DLA	0.0020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	0.43	DLA	0.20	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	<0.00020	DLA	0.00020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total	<0.0020	DLA	0.0020	mg/L		09-JUL-12	R2395195
Copper (Cu)-Total	<0.0020	DLA	0.0020	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	1.47	DLA	0.010	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.0013	DLA	0.20	mg/L		09-JUL-12	R2395195 R2395195
Manganese (Mn)-Total	0.0013	DLA	0.0010	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	<0.247	DLA	0.0060	mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Uranium (U)-Total	<0.0020	DLA	0.0020	-		09-JUL-12 09-JUL-12	
Zinc (Zn)-Total		DLA		mg/L		09-JUL-12	R2395195
Miscellaneous Parameters	<0.060	DLA	0.060	mg/L		09-JUL-12	R2395195
Turbidity	134		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							B a a a a a a a a a a
Alkalinity, Total (as CaCO3)	508		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	620		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	98	DLA	20	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)			20	g/ E	00 002 12	0000212	112000001
Fluoride (F)	0.32		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.02		0.10				112000201
Calcium (Ca)	467	DLA	10	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	51	DLA	10	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	817	DLA	10	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	1180	DLA	20	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	6240	DLA	30	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved	0240		50	ing/ E	00 002 12	00 002 12	112000020
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.254		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N	0.204		0.0010	ing/ E	00 002 12	00 002 12	112000010
Nitrate-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	0.058		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity			0.00				
pH and Conductivity	7.39	EHT	0.10	рН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	8800		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC			10				
Escherichia Coli mcoli blue MF							
E. Coli	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count				5. 5, 100mL		0.00212	
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF	2000		10		50 00L-12	0000012	112004401
Total Coliforms	210		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
	210		1	51 5, 100mL	50 00L-12	01 001 12	112034230

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-13 BH212							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	79.6	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0811	DLA DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total Boron (B)-Total	2.64 <0.20	DLA	0.0020	mg/L		09-JUL-12 09-JUL-12	R2395195 R2395195
Cadmium (Cd)-Total	0.00247	DLA	0.20 0.00020	mg/L mg/L		09-JUL-12	R2395195 R2395195
Chromium (Cr)-Total	0.132	DLA	0.00020	mg/L		09-JUL-12	R2395195 R2395195
Copper (Cu)-Total	0.132	DLA	0.0020	mg/L		09-JUL-12	R2395195
Iron (Fe)-Total	178	DLA	0.20	mg/L		09-JUL-12	R2395195
Lead (Pb)-Total	0.115	DLA	0.0010	mg/L		09-JUL-12	R2395195
Manganese (Mn)-Total	4.37	DLA	0.0060	mg/L		09-JUL-12	R2395195
Selenium (Se)-Total	0.0099	DLA	0.0020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0159	DLA	0.00020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.685	DLA	0.060	mg/L		09-JUL-12	R2395195
Miscellaneous Parameters							
Turbidity	>4000		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water							
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	374		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	456		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl) Chloride (Cl)	9.1		1.0	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)	9.1		1.0	ing/L	00-001-12	00-001-12	N2393031
Fluoride (F)	0.21		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
ICP Cations	0.21		0.10				112000201
Calcium (Ca)	109		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K)	5.5		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Magnesium (Mg)	35.2		1.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sodium (Na)	27.5		2.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Sulfur (as SO4)	87.7		3.0	mg/L	05-JUL-12	05-JUL-12	R2393328
Iron (Fe) & Manganese (Mn) -Dissolved							
Iron (Fe)-Dissolved	0.070		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.386		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N	0.50		0.50	~~~~/l	05 11 10	05 11 12	D 0000000
Nitrate-N Nitrite-N	<0.50 <0.050		0.50	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.050		0.050 0.50	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393099 R2393099
pH and Conductivity	<0.50		0.50	ing/L	03-301-12	03-301-12	RZ393099
pH and Conductivity pH	7.58	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	834		10	uS/cm	05-JUL-12	05-JUL-12	R2392988
Total Coliform, EColi Mcoli Blue & HPC							
Escherichia Coli mcoli blue MF E. Coli	10		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count			•				
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF							
Total Coliforms	10		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-14 DUP 2							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Health and Toxicity Metals							
Total Mercury in Water by CRC ICPMS							
Mercury (Hg)-Total	<0.000050		0.000050	mg/L		06-JUL-12	R2393822
Total Metals in Water by CRC ICPMS							
Aluminum (Al)-Total	89.5	DLA	0.10	mg/L		09-JUL-12	R2395195
Arsenic (As)-Total	0.0881	DLA	0.0020	mg/L		09-JUL-12	R2395195
Barium (Ba)-Total	3.04	DLA	0.0020	mg/L		09-JUL-12	R2395195
Boron (B)-Total	<0.20	DLA	0.20	mg/L		09-JUL-12	R2395195
Cadmium (Cd)-Total	0.00273	DLA DLA	0.00020	mg/L		09-JUL-12	R2395195
Chromium (Cr)-Total Copper (Cu)-Total	0.147	DLA	0.0020	mg/L		09-JUL-12 09-JUL-12	R2395195
Iron (Fe)-Total	0.201 203	DLA	0.010 0.20	mg/L		09-JUL-12 09-JUL-12	R2395195
Lead (Pb)-Total	0.138	DLA	0.20	mg/L mg/L		09-JUL-12	R2395195 R2395195
Manganese (Mn)-Total	4.95	DLA	0.0010	mg/L		09-JUL-12	R2395195 R2395195
Selenium (Se)-Total	0.0098	DLA	0.0020	mg/L		09-JUL-12	R2395195
Uranium (U)-Total	0.0098	DLA	0.00020	mg/L		09-JUL-12	R2395195
Zinc (Zn)-Total	0.771	DLA	0.060	mg/L		09-JUL-12	R2395195
	0.771		0.000	ing/ E		00 002 12	112000100
L1172891-15 DUP 1							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Miscellaneous Parameters							
Turbidity	927		0.10	NTU		06-JUL-12	R2393860
Routine Potable Water	021		0.10				112000000
Alkalinity, Total							
Alkalinity, Total (as CaCO3)	512		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Bicarbonate (HCO3)	625		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Hydroxide (OH)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Carbonate (CO3)	<5.0		5.0	mg/L	05-JUL-12	05-JUL-12	R2393108
Chloride (Cl)							
Chloride (Cl)	101	DLA	20	mg/L	05-JUL-12	05-JUL-12	R2393031
Fluoride (F)							
Fluoride (F)	0.31		0.10	mg/L	05-JUL-12	05-JUL-12	R2393297
	450		4.0		05 11 1 40	05 11 10	Deserves
Calcium (Ca)	459	DLA DLA	10	mg/L	05-JUL-12	05-JUL-12	R2393328
Potassium (K) Magnesium (Mg)	51	DLA	10 10	mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393328
Sodium (Na)	815 1160	DLA	20	mg/L mg/L	05-JUL-12 05-JUL-12	05-JUL-12 05-JUL-12	R2393328 R2393328
Sulfur (as SO4)	6400	DLA	20 30	mg/L	05-JUL-12	05-JUL-12 05-JUL-12	R2393328 R2393328
Ion Balance Calculation	0+00		50	g/∟		00001-12	112030020
Cation - Anion Balance	-1.6			%		05-JUL-12	
TDS (Calculated)	9290			mg/L		05-JUL-12	
Hardness (as CaCO3)	4500			mg/L		05-JUL-12	
Iron (Fe) & Manganese (Mn) -Dissolved				-			
Iron (Fe)-Dissolved	<0.030		0.030	mg/L	05-JUL-12	05-JUL-12	R2393310
Manganese (Mn)-Dissolved	0.244		0.0010	mg/L	05-JUL-12	05-JUL-12	R2393310
Nitrate, Nitrite and Nitrate+Nitrite-N							
Nitrate-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrite-N	0.080		0.050	mg/L	05-JUL-12	05-JUL-12	R2393099
Nitrate+Nitrite-N	<0.50		0.50	mg/L	05-JUL-12	05-JUL-12	R2393099
pH and Conductivity							
pH	7.42	EHT	0.10	pН	05-JUL-12	05-JUL-12	R2392988
Conductivity (EC)	8800		10	uS/cm	05-JUL-12	05-JUL-12	R2392988

S1607.7

ALS ENVIRONMENTAL ANALYTICAL REPORT

Sample Details/Parameters	Result	Qualifier*	D.L.	Units	Extracted	Analyzed	Batch
L1172891-15 DUP 1							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
L1172891-16 DUP 3							
Sampled By: CLIENT on 04-JUL-12							
Matrix: WATER							
Total Coliform, EColi Mcoli Blue & HPC							
Escherichia Coli mcoli blue MF							
E. Coli Heterotrophic Plate Count	<1		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
Heterotrophic Plate Count	>3000		10	CFU/mL	06-JUL-12	08-JUL-12	R2394461
Total Coliform mcoli blue MF Total Coliforms	OVERGROWN		1	CFU/100mL	06-JUL-12	07-JUL-12	R2394258
					0000012	07 002 12	112004200
				-			

Reference Information

Sample Param	eter Qualifier Key:			
Qualifier	Description			
DLA	Detection Limit Adjust	ed For required dilution		
EHT	Exceeded Recommer	nded Holding Time Prior To Anal	/sis	
Test Method R	eferences:			
ALS Test Code	Matrix	Test Description	N	lethod Reference**
ALK-TOT-SK	Water	Alkalinity, Total	Δ	PHA 2320 B-Auto-Pot. Titration
	mined by a titration of ent) also reported.	an aliquot with standardized acid	solution to a pH of	f 4.5. Total alkalinity, bicarbonate, carbonate(if present) and
Reference Greenberg, Arno Method 2320B.	ld E., Cleseri, Lenore S	S., Eaton, Andrew D., Standard N	lethods For The Ex	camination of Water and Wastewater, 18th Edition, 1992,
CL-SK	Water	Chloride (Cl)	A	VPHA 4500-CL E
Chloride in aque	ous matrices is determ	ined colorimetrically by auto-ana	yzer.	
	_			
EC-MCOLIMF-W		Escherichia Coli mcoli blue MF		PHA 9222B AND HACH 10029
submitted for bot	s applicable to E. coli a h Total Coliforms and l m analysis can be perf	E. coli. If two sample bottles are	so used for Total C submitted for thes	Coliform analysis when only one 100 mL samples is e analyses, E. coli analysis is performed by this procedure,
incubated at 35C (2,3,5 triphenylte	+/- 0.5C for 24hrs. Co trazolium chloride) in th	pliforms that are not E. coli turn r	ed because they re to the reaction bet	repared with m-Coli Blue 24 broth. The inverted plates are duce TTC ween the enzyme beta glucuronidase
ETL-ROUTINE-I	CP-SK Water	ICP Cations	A	NPHA 3120 B-ICP-OES-ROU
These ions are d	etermined directly y IC	P-OES.		
Reference Greenberg, Arno Method 3120B.	ld E., Cleseri, Lenore S	S., Eaton, Andrew D., Standard M	lethods For The E>	camination of Water and Wastewater, 18th Edition, 1992,
F-SK	Water	Fluoride (F)	۵	VPHA 4500-F C
				o solution and measuring the potential. Samples and up any complexed fluoride ions.
Reference: Greenberg, Arno Method 4500-F (S., Eaton, Andrew D., Standard N	lethods For The E>	camination of Water and Wastewater, 18th Edition, 1992,
FE,MN-DIS-SK	Water	Iron (Fe) & Manganese (Mn) -E	Dissolved A	PHA 3120 B-ICP-OES
Iron and Mangar	ese are determined in	a filtered and preserved sample	by ICP-OES.	
HG-T-CVAF-SK	Water	Total Mercury in Water by CRC	ICPMS A	NPHA 3030E / EPA 245.7
		n of the acidified sample using bu atomic fluorescence spectrophot		de prior to reduction of the sample with stannous chloride.
HPC-PP-WP	Water	Heterotrophic Plate Count	Ą	PHA 9215B, 2005
				easuring changes during water treatment and distribution or in er incubation, the colonies are counted and reported as
IONBALANCE-O	P03-SK Water	Ion Balance Calculation	Ą	VPHA 1030-E
MET-T-CCMS-S	K Water	Total Metals in Water by CRC	CPMS A	NPHA 3030E / EPA 6020A
		estion with concentrated nitric ac rom EPA Method 6020A).	id followed by instr	umental analysis using collision cell inductively coupled
N2/N3-SK	Water	Nitrate, Nitrite and Nitrate+Nitri	te-N A	VPHA 4500 NO3F

Nitrate is quantitatively reduced to nitrite by passage of the sample through a copperized cadmium column. The nitrite (reduced nitrate plus original nitrite) is then determined by diazotizing with sulfanilamide followed by coupling with N-(1-naphthyl)ethylenediamine dihydrochloride. The resulting

Reference Information

Test Method References:

ALS Test Code	Matrix	Test Description	Method Reference**

water-soluble dye has a magenta color, which is measured at 520nm. Original nitrite can also be determined by removing the cadmium column and following the same procedure. Nitrate-N, Nitrite-N and NO3+NO2-N are reported.

Reference

Greenberg, Arnold E., Cleseri, Lenore S., Eaton, Andrew D., Standard Methods For The Examination of Water and Wastewater, 18th Edition, 1992, Method 4500NO3-F.

PH/EC-SK	Water	pH and Conductivity	APHA 4500-H, 2510
TC-MCOLIMF-WP	Water	Total Coliform mcoli blue MF	APHA 9222B and HACH 10029
This procedure is applic	able to E. coli	analysis for water samples. It is also u	sed for Total Coliform analysis when only one 100 mL samples is

This procedure is applicable to E. coli analysis for water samples. It is also used for Total Coliform analysis when only one 100 mL samples is submitted for both Total Coliforms and E. coli. If two sample bottles are submitted for these analyses, E. coli analysis is performed by this procedure, and Total Coliform analysis is performed by A151.

A suitable sample volume is poured through a membrane filter and placed in a petri dish prepared with m-Coli Blue 24 broth. The inverted plates are incubated at 35C +/- 0.5C for 24hrs. Coliforms that are not E. coli turn red because they reduce TTC

APHA 2130 B-Nephelometer

(2,3,5 triphenyltetrazolium chloride) in the medium. E. coli turn blue due to the reaction between the enzyme beta glucuronidase and BCIG (5-bromo-4 chloro-3 indolyl-beta-D-glucuronide) in the medium.

TURBIDITY-ED Water Turbidity

* ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location
SK	ALS ENVIRONMENTAL - SASKATOON, SASKATCHEWAN, CANADA
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA
WP	ALS ENVIRONMENTAL - WINNIPEG, MANITOBA, CANADA

Chain of Custody Numbers:

10-208196

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

10-208197

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

10-208196

ALS Environmental

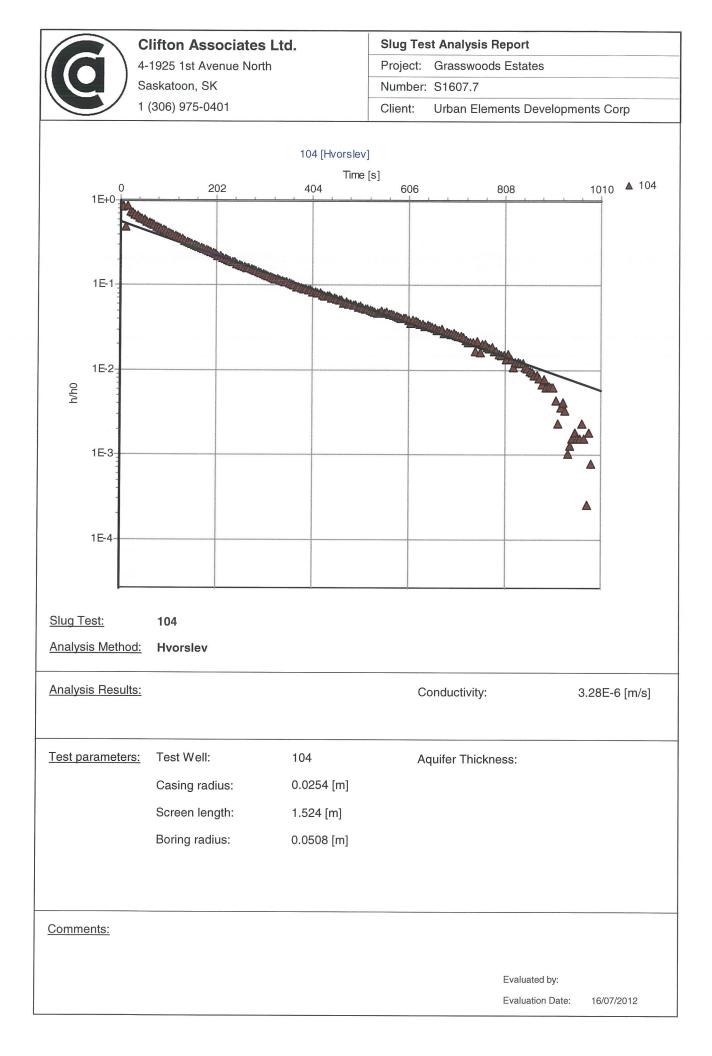
Page ____ of

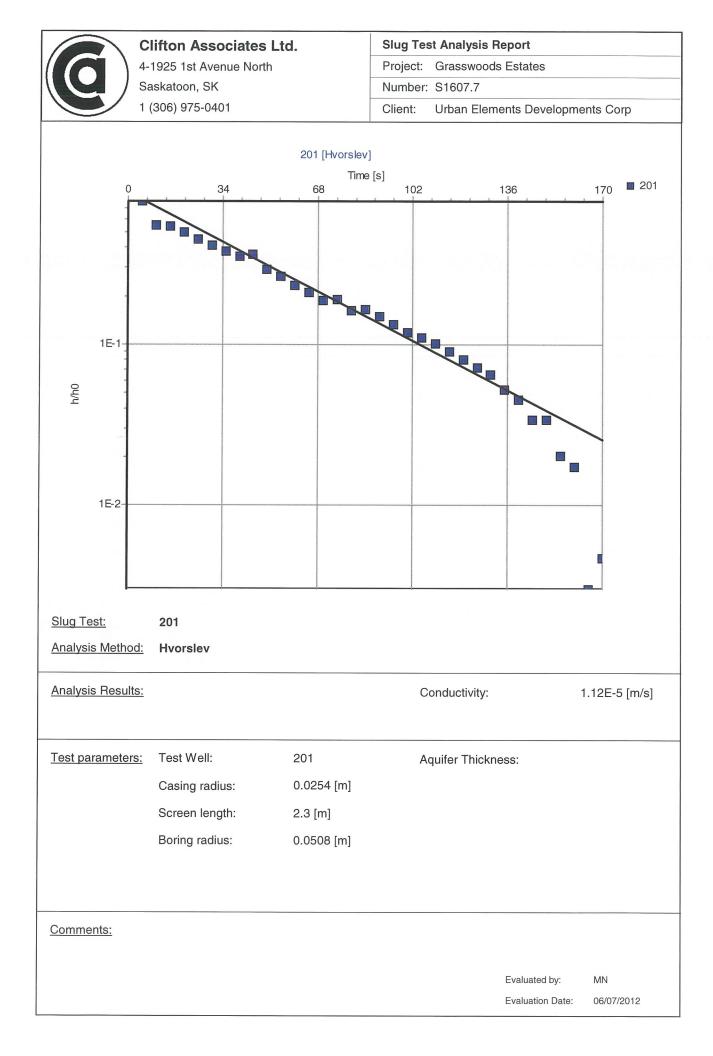
													<u> </u>		
Report To	A		Report For	mat / Distribution	1 <u></u>		Servic	e Reque	est:(Rush	subject to av	ailability - Co	ontact ALS t	to confirm TA	JT)	
Company:	Clifton Hssociate		Standard:	Other (sp	ecify):			Regular	(Standard	Turnaround 1	līmes - Busin	ess Days)			
Contact:	Sumith or Cin	dy	Select: PD		Digital	Fax		Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT							
Address: 2		MUL N					\mathcal{N}	Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT							
		tk Gwi	Email 2: Cindy Friesur Clifton-Ca					Same Day or Weekend Emergency - Contact ALS to confirm TAT							
		975 1076			<u> </u>		Analysis Request								
	Same as Report ? (circle) (Yes)			oject Information				(Indicate Filtered or Preserved, F/P)						_	
	Copy of Invoice with Report? (ci	rcie) Yes or No		51607-7				\leq	$\angle \downarrow$		$\langle \rangle$		\leq	\triangleleft	4
Company:			PO/AFE:				Portableth			G					
Contact:	,		LSD:			· · · · · · · · · · · · · · · · · · ·	3	5		S					
Address:							3	ଔ	N	5					lers
Phone:	Fax:	·	Quote #:					\sim	3	-Heath					Itair
Lab Work Or	der # (lab use only)		ALS Contact:		Sampler:		ine -	EC	Ĩ	metal-					Number of Containers
Sample #		mple Identification tion will appear on the report)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routive	(2)	H P	3 E					Numbe
	BH-211			July 04812) ~	water	5	V	5	1-					Ŷ
2	BH 202			'n		H			-		-				4
3	BH 201			.5		k	V	~	-		-				4
4	BH 208			2		4	レ	-4	· 4	44	-				4
5	BH 203			n		7	レ			44	_				4
b	BA210			* n		54	\checkmark			L	-				2
チ	6#204			en		4	1		V	40	-				4
8	CAL 104			n		n	V	-	4	ノノ	-				4
9	BH 205			'n		n	~	~	i i		-				4
10	BH 213			n		4	L	-	che		-				4
А	BH206	a ser a main a ser a		n		n	~	~	~ 0			Τ			4
17	BA 207			h		h	レ	~	- C-	in					4
	Special Instruc	tions / Regulation with water or lan	d use (CCN	IE- Freshwater Ac	quatic Life/BC C	SR-Commercial/A	B Tier	1-Nat	ural/ET	C) / Hazaı	rdous De	tails		zersztzi z Militar	
		Failure to complete al	Inortions	f this form may d	elav analveie	Please fill in this f	orm I F	GIBL	Y						
	By the use o	of this form the user acknowledges								vhite - re	port copy				
	SHIPMENT RELEASE (clier			PMENT RECEPTION							A		b use only)	
Released by:-	Date:	Time: Received		Date:	Time:	Temperature:	Verif	ied by:		Date:		Time:		Observat	
1 HAN	mitte lin.	autors I A	Sauce an	04-J.1-12	18:25	1 8 %		2						Yes / No If Yes add	
E				01 301 10		ORATORY COPY		0.04/ 0	LIENT C					18.01 Fro	1
REF	FER TO BACK PAGE FOR ALS LOC	ATIONS AND SAMPLING INFORMATION	N			UNATURE CUPT	ICLU	Jvv - C					GENE	10.01 FIL	200

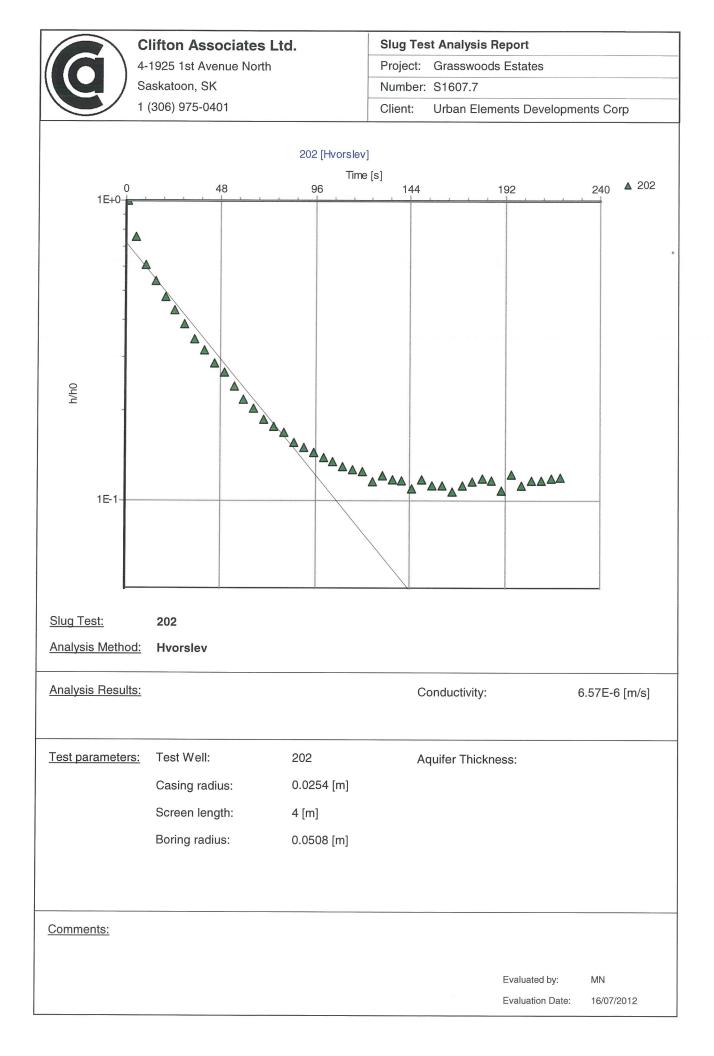
10-208197

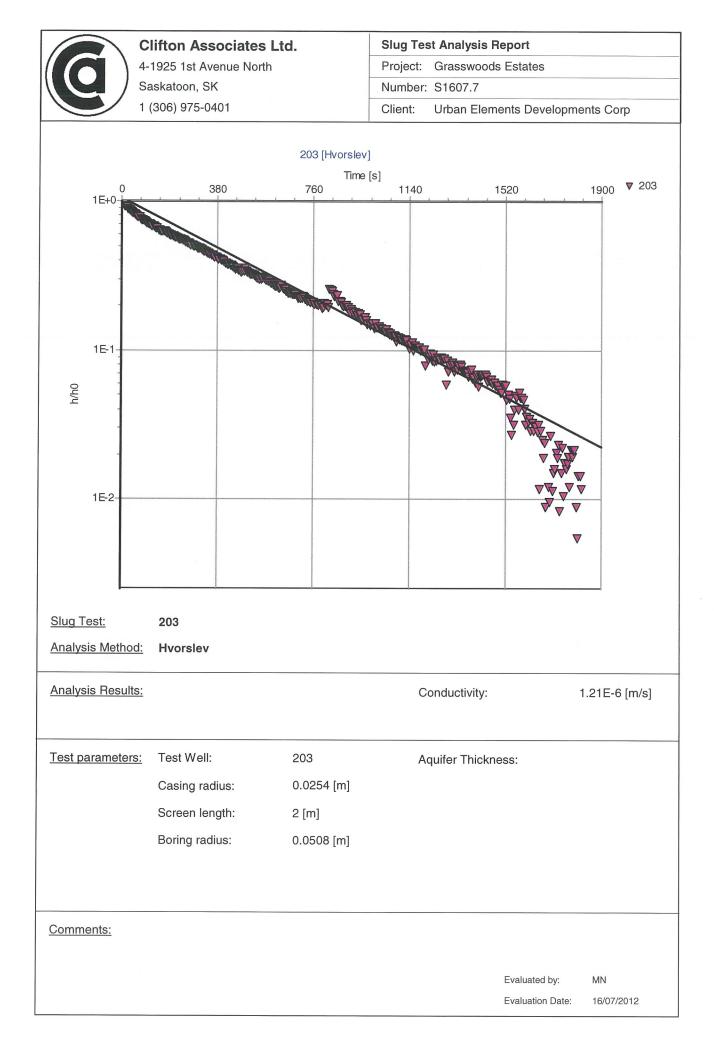
Page

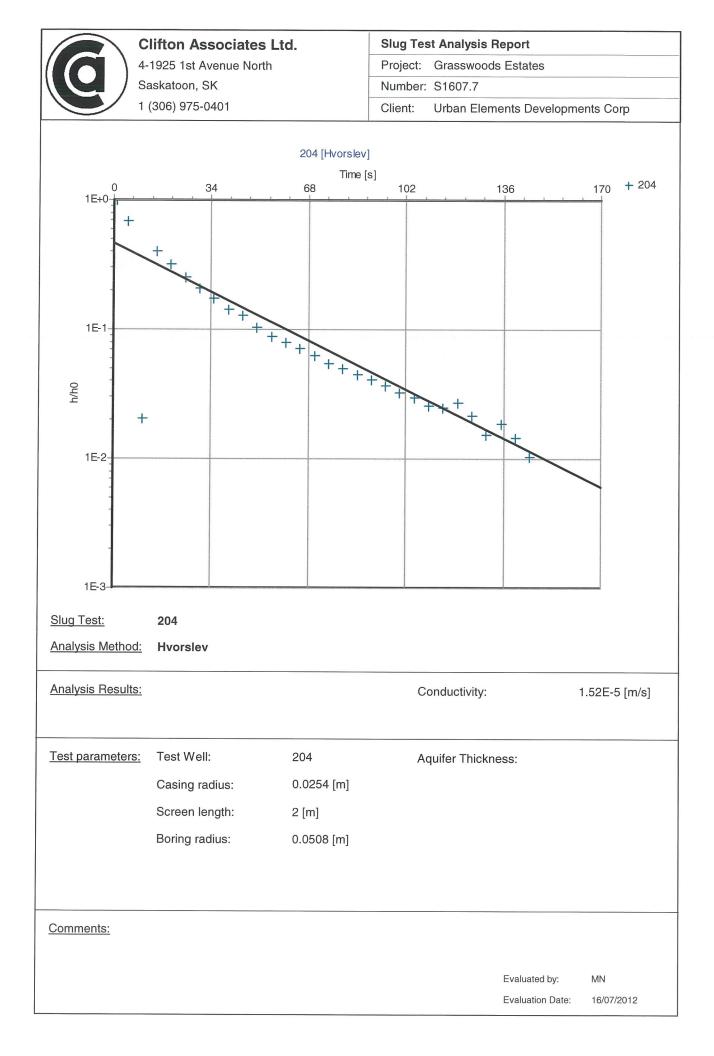
of




Report To	port To Report Format / Distribution										Service Request:(Rush subject to availability - Contact ALS to confirm TAT)												
Company: Cliffor Associates Lt						Standard: V Other (specify):					Regular (Standard Turnaround Times - Business Days)												
Contact:						Select: PDF Excel Digital Fax.					Priority(2-4 Business Days)-50% surcharge - Contact ALS to confirm TAT												
Address:					· · · · · · · · · · · · · · · · · · ·	Email 1: Symith Kahanda a Chifton-ca					Emergency (1-2 Business Days)-100% Surcharge - Contact ALS to confirm TAT												
						Email 2: Condy Friesen & cliffon-ca																	
Phone: Fax:											Analysis Request												
Invoice To Same as Report ? (circle) Yes or No (if No, provide details)					is) Ci	Client / Project Information						(Indica	ate Bilt	ered o	r Prese	erved,	F/P)	,				
Copy of Invoice with Report? (circle) Yes) or No						Job #:															7		
Company:					P	PO / AFE:					F	ſ	ř	H		ľ	ľ	T		Ť	-		
Contact:					LS	LSD:					6	~		Z									
Address:										Porte 61	Q S	L		Je a							ers		
Phone:	one: Fax:					Quote #:						3		+ hed							Itain		
Lab Work O	b Work Order # (lab use only)					LS ontact:		Sampler:			3	26-	2	the							r of Cor		
Sample #		Samı (This descriptio	ple Ident		ort)		Date (dd-mmm-yy)	Time (hh:mm)	Sample Type	Routine	5	H	B	ne							Number of Containers		
13	BHZ	19					Julyod 201		Dater	1	\sim	1	~	F.	-						4		
iy	Duc	2					07		· · ·						-	·							
14	- Dip	<u>_</u>					n		n						-+	·· ·			-+				
<u> </u>	pup	1					<u> </u>		21						·	-+		-+	-+	—	1		
16	Dup	3					n		h			5	 								$\perp L$		
17	Dup	04					m		m				レ								1.		
	0	/																					
	8 ()																						
	§																						
											 					-+	-+			+			
																				\rightarrow			
	6																						
in an		Special Instruction	ons / Rec	ulation with w	ater or land	use (CC	ME- Freshwater A	ouatic Life/BC C	I SR-Commercial/A	B Tie	r 1-Na	tural/	ETC)	/ Haza	rdous	Detai	S						
	-	.poolal monaut				an an tha an				******		000000000				<u></u>	<u></u>	<u>8-45.05400000</u>	1000000-0000	100-00-00000000000000000000000000000000	1996 9459 9495		
		By the use of	this forn						Please fill in this fo as specified on th				ne whi	ite - re	port c	ору.							
	SHIPMENT	RELEASE (client)					IPMENT RECEPT					and the second se				ICATI)N (la	b use	only)				
Released by	2. Fel	Date:		lme:	Received by	<u>.</u>	Date:	Time:	Temperature:		fied by	agay a success	en (1967). S	Date	NUMBER STRATE	CISIL/2018/01A	Time:	<u></u>	O Ye	bservati es / No 1	?		
MON	DIFA	Unly	04201	2	A. Prou	In	04-5.1-12		<u> </u>					L						Yes add			
DE	EERTO BACK PAG	E FOR ALS LOCAT	TIONS AN	D SAMPLING IN	FORMATION			WHITE - LAB	ORATORY COPY	YELL	- WO.	CLIEN	T COP	Ϋ́Υ				G	ENF 1۶نا	3.01 Fro	nt		






Appendix C

